Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 274(24): 16819-24, 1999 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-10358025

RESUMEN

The lipopolysaccharide (LPS) of Chlamydia trachomatis L2 was isolated from tissue culture-grown elementary bodies using a modified phenol/water procedure followed by extraction with phenol/chloroform/light petroleum. From a total of 5 x 10(4) cm2 of infected monolayers, 22.3 mg of LPS were obtained. Compositional analysis indicated the presence of 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo), GlcN, phosphorus, and fatty acids in a molar ratio of 2.8:2:2.1:4.5. Matrix-assisted laser-desorption ionization mass spectrometry performed on the de-O-acylated LPS gave a major molecular ion peak at m/z 1781.1 corresponding to a molecule of 3 Kdo, 2 GlcN, 2 phosphates, and two 3-hydroxyeicosanoic acid residues. The structure of deacylated LPS obtained after successive treatment with hydrazine and potassium hydroxide was determined by 600 MHz NMR spectroscopy as Kdoalpha2-->8Kdoalpha2-->4Kdoalpha2-->6D-GlcpNbeta1 -->6D-GlcpNalpha 1,4'-bisphosphate. These data, together with those published recently on the acylation pattern of chlamydial lipid A (Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R. J., Takayama, K, Sievert, T. R., Rice, P. A., Lin, J.-S. L., and Golenbock, D. T. (1997) J. Biol. Chem. 272, 10594-10600) allow us to present for the first time the complete structure of a major molecular species of a chlamydial LPS.


Asunto(s)
Chlamydia trachomatis/química , Lipopolisacáridos/química , Secuencia de Carbohidratos , Chlamydia trachomatis/clasificación , Ácidos Eicosanoicos/análisis , Glucosamina/análisis , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fósforo/análisis , Serotipificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Azúcares Ácidos/análisis
2.
Electrophoresis ; 18(5): 819-25, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9194614

RESUMEN

More than 95% of grass pollen allergic patients possess IgE antibodies against grass group I, a heterogeneous group of glycoproteins found in all temperate grasses. We studied the structural variability of the group I allergens in single species and among different grasses. By 2-DE blotting using patients' IgE and monoclonal antibodies, we detected IgE-reactive isoforms with molecular masses between 32 and 37 kDa and focusing in a wide pI ranging from 4.7 to 7.6. While the group I allergens of timothy grass (Phl p 1) were composed of 37 and 35 kDa components, only single isoforms were found for ryegrass (Lol p 1) and velvet grass (Hol l 1): 32 and 34 kDa, respectively. By N-terminal microsequencing we determined single amino acid substitutions in different-sized group I allergens. The post-translational modifications (one N-glycosylation site, two hydroxylated proline residues and seven cysteine residues for potential disulfide formations), which contribute to IgE reactivity, were identical in all. From the cDNA sequences we deduced protein sequence homologies > 90%, a result which might explain the high IgE cross-reactivity among the grasses. In order to test whether recombinant group I grass allergens can act as substitutes for the natural forms, we expressed rPhl p 1 in E. coli and in P. pasteuris. 2-DE immunoblotting again demonstrated a microheterogeneity in molecular mass and pI. While the E. coli products were free from post-translational modifications, rPhl p 1 from Pichia is a heterogeneous glycoprotein fraction with a carbohydrate content of about 15%. This rPhl p 1 is hyperglycosylated compared to the nPhl p 1, which only has a 5% carbohydrate content.


Asunto(s)
Alérgenos/análisis , Poaceae/química , Polen/química , Secuencia de Aminoácidos , Antígenos de Plantas , Electroforesis en Gel Bidimensional , Glicoproteínas/análisis , Humanos , Datos de Secuencia Molecular , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Homología de Secuencia de Aminoácido
3.
Eur J Biochem ; 145(3): 505-9, 1984 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-6510414

RESUMEN

In the present paper laser desorption mass spectrometry (LDMS) was applied to dephosphorylated free lipid A preparations obtained from lipopolysaccharides of Re mutants of Salmonella minnesota, Escherichia coli and Proteus mirabilis. The purpose of this study was to elucidate the location of (R)-3-hydroxytetradecanoic acid and 3-O-acylated (R)-3-hydroxytetradecanoic acid residues which are bound to amino and hydroxyl groups of the glucosamine disaccharide backbone of lipid A. Based on the previous finding from biochemical analyses that the amino group of the nonreducing glucosamine residue (GlcN II) of the backbone carries, in S. minnesota and E. coli, 3-dodecanoyloxytetradecanoic acid and, in P. mirabilis, 3-tetradecanoyloxytetradecanoic acid, a self-consistent interpretation of the LDMS was possible. It was found that: (a) in all three lipids A GlcN II is, besides the amide-linked 3-acyloxyacyl residue, substituted by ester-linked 3-tetradecanoyloxytetradecanoic acid; (b) the reducing glucosamine (GlcN I) is substituted by ester-linked 3-hydroxytetradecanoic acid; (c) the amino group of GlcN I carries a 3-hydroxytetradecanoic acid which is non-acylated in E. coli and which is partially acylated by hexadecanoic acid in S. minnesota and P. mirabilis. In lipids A which were obtained from the P. mirabilis Re mutant grown at low temperature (12 degrees C) LDMS analysis revealed that specifically the one fatty acid bound to the 3-hydroxyl group of amide-linked 3-hydroxytetra-decanoic acid at GlcN II is positionally replaced by delta 9-hexadecenoic acid (palmitoleic acid). It appears, therefore, that enterobacterial lipids A resemble each other in that the 3-hydroxyl groups of the two 3-hydroxytetradecanoic acid residues linked to GlcN II are fully acylated, while those of the two 3-hydroxytetradecanoic acid groups attached to GlcN I are free or only partially substituted.


Asunto(s)
Enterobacteriaceae/análisis , Lípido A/análisis , Lipopolisacáridos , Fenómenos Químicos , Química , Rayos Láser , Lipopolisacáridos/aislamiento & purificación , Espectrometría de Masas/métodos , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA