Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 3: CD005431, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912744

RESUMEN

BACKGROUND: Traumatic hyphema is the entry of blood into the anterior chamber, the space between the cornea and iris, following significant injury to the eye. Hyphema may be associated with significant complications that uncommonly cause permanent vision loss. Complications include elevated intraocular pressure, corneal blood staining, anterior and posterior synechiae, and optic nerve atrophy. People with sickle cell trait or disease may be particularly susceptible to increases in intraocular pressure and optic atrophy. Rebleeding is associated with an increase in the rate and severity of complications. OBJECTIVES: To assess the effectiveness of various medical interventions in the management of traumatic hyphema. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2022, Issue 3); MEDLINE Ovid; Embase.com; PubMed (1948 to March 2022); the ISRCTN registry; ClinicalTrials.gov; and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). The last date of the search was 22 March 2022. SELECTION CRITERIA: Two review authors independently assessed the titles and abstracts of all reports identified by the electronic and manual searches. We included randomized and quasi-randomized trials that compared various medical (non-surgical) interventions versus other medical interventions or control groups for the treatment of traumatic hyphema following closed-globe trauma. We applied no restrictions on age, gender, severity of the closed-globe trauma, or level of visual acuity at time of enrollment. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane and assessed the certainty of evidence using GRADE. MAIN RESULTS: We included 23 randomized and seven quasi-randomized studies with a total of 2969 participants. Interventions included antifibrinolytic agents (systemic and topical aminocaproic acid, tranexamic acid, and aminomethylbenzoic acid), corticosteroids (systemic and topical), cycloplegics, miotics, aspirin, conjugated estrogens, traditional Chinese medicine, monocular versus bilateral patching, elevation of the head, and bed rest. We found no evidence of an effect on visual acuity for any intervention, whether measured within two weeks (short term) or for longer periods. In a meta-analysis of two trials, we found no evidence of an effect of aminocaproic acid on long-term visual acuity (RR 1.03, 95% confidence interval (CI) 0.82 to 1.29) or final visual acuity measured up to three years after the hyphema (RR 1.05, 95% CI 0.93 to 1.18). Oral tranexamic acid appeared to provide little to no benefit on visual acuity in four trials (RR 1.12, 95% CI 1.00 to 1.25). The remaining trials evaluated the effects of various interventions on short-term visual acuity; none of these interventions was measured in more than one trial. No intervention showed a statistically significant effect (RRs ranged from 0.75 to 1.10). Similarly, visual acuity measured for longer periods in four trials evaluating different interventions was also not statistically significant (RRs ranged from 0.82 to 1.02). The evidence supporting these findings was of low or very low certainty. Systemic aminocaproic acid reduced the rate of recurrent hemorrhage (RR 0.28, 95% CI 0.13 to 0.60), as assessed in six trials with 330 participants. A sensitivity analysis omitting two studies not using an intention-to-treat analysis reduced the strength of the evidence (RR 0.43, 95% CI 0.17 to 1.08). We obtained similar results for topical aminocaproic acid (RR 0.48, 95% CI 0.20 to 1.10) in two trials with 131 participants. We assessed the certainty of the evidence as low. Systemic tranexamic acid had a significant effect in reducing the rate of secondary hemorrhage (RR 0.33, 95% CI 0.21 to 0.53) in seven trials with 754 participants, as did aminomethylbenzoic acid (RR 0.10, 95% CI 0.02 to 0.41), as reported in one study. Evidence to support an associated reduction in risk of complications from secondary hemorrhage (i.e. corneal blood staining, peripheral anterior synechiae, elevated intraocular pressure, and development of optic atrophy) by antifibrinolytics was limited by the small number of these events. Use of aminocaproic acid was associated with increased nausea, vomiting, and other adverse events compared with placebo. We found no evidence of an effect on the number of adverse events with the use of systemic versus topical aminocaproic acid or with standard versus lower drug dose.  The number of days for the primary hyphema to resolve appeared to be longer with the use of systemic aminocaproic acid compared with no use, but this outcome was not altered by any other intervention. The available evidence on usage of systemic or topical corticosteroids, cycloplegics, or aspirin in traumatic hyphema was limited due to the small numbers of participants and events in the trials. We found no evidence of an effect between a single versus binocular patch on the risk of secondary hemorrhage or time to rebleed. We also found no evidence of an effect on the risk of secondary hemorrhage between ambulation and complete bed rest. AUTHORS' CONCLUSIONS: We found no evidence of an effect on visual acuity of any of the interventions evaluated in this review. Although the evidence was limited, people with traumatic hyphema who receive aminocaproic acid or tranexamic acid are less likely to experience secondary hemorrhage. However, hyphema took longer to clear in people treated with systemic aminocaproic acid. There is no good evidence to support the use of antifibrinolytic agents in the management of traumatic hyphema, other than possibly to reduce the rate of secondary hemorrhage. The potentially long-term deleterious effects of secondary hemorrhage are unknown. Similarly, there is no evidence to support the use of corticosteroids, cycloplegics, or non-drug interventions (such as patching, bed rest, or head elevation) in the management of traumatic hyphema. As these multiple interventions are rarely used in isolation, further research to assess the additive effect of these interventions might be of value.


Asunto(s)
Antifibrinolíticos , Glaucoma , Ácido Tranexámico , Humanos , Corticoesteroides/uso terapéutico , Ácido Aminocaproico/uso terapéutico , Antifibrinolíticos/uso terapéutico , Aspirina/uso terapéutico , Glaucoma/tratamiento farmacológico , Hipema/terapia , Hipema/tratamiento farmacológico , Midriáticos/uso terapéutico , Ácido Tranexámico/uso terapéutico
2.
Cochrane Database Syst Rev ; 12: CD011016, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31847055

RESUMEN

BACKGROUND: Polyunsaturated fatty acid (PUFA) supplements, involving omega-3 and/or omega-6 components, have been proposed as a therapy for dry eye. Omega-3 PUFAs exist in both short- (alpha-linolenic acid [ALA]) and long-chain (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) forms, which largely derive from certain plant- and marine-based foods respectively. Omega-6 PUFAs are present in some vegetable oils, meats, and other animal products. OBJECTIVES: To assess the effects of omega-3 and omega-6 polyunsaturated fatty acid (PUFA) supplements on dry eye signs and symptoms. SEARCH METHODS: CENTRAL, Medline, Embase, two other databases and three trial registries were searched in February 2018, together with reference checking. A top-up search was conducted in October 2019, but the results have not yet been incorporated. SELECTION CRITERIA: We included randomized controlled trials (RCTs) involving dry eye participants, in which omega-3 and/or omega-6 supplements were compared with a placebo/control supplement, artificial tears, or no treatment. We included head-to-head trials comparing different forms or doses of PUFAs. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods and assessed the certainty of the evidence using GRADE. MAIN RESULTS: We included 34 RCTs, involving 4314 adult participants from 13 countries with dry eye of variable severity and etiology. Follow-up ranged from one to 12 months. Nine (26.5%) studies had published protocols and/or were registered. Over half of studies had high risk of bias in one or more domains. Long-chain omega-3 (EPA and DHA) versus placebo or no treatment (10 RCTs) We found low certainty evidence that there may be little to no reduction in dry eye symptoms with long-chain omega-3 versus placebo (four studies, 677 participants; mean difference [MD] -2.47, 95% confidence interval [CI] -5.14 to 0.19 units). We found moderate certainty evidence for a probable benefit of long-chain omega-3 supplements in increasing aqueous tear production relative to placebo (six studies, 1704 participants; MD 0.68, 95% CI 0.26 to 1.09 mm/5 min using the Schirmer test), although we did not judge this difference to be clinically meaningful. We found low certainty evidence for a possible reduction in tear osmolarity (one study, 54 participants; MD -17.71, 95% CI -28.07 to -7.35 mOsmol/L). Heterogeneity was too substantial to pool data on tear break-up time (TBUT) and adverse effects. Combined omega-3 and omega-6 versus placebo (four RCTs) For symptoms (low certainty) and ocular surface staining (moderate certainty), data from the four included trials could not be meta-analyzed, and thus effects on these outcomes were unclear. For the Schirmer test, we found moderate certainty evidence that there was no intergroup difference (four studies, 455 participants; MD: 0.66, 95% CI -0.45 to 1.77 mm/5 min). There was moderate certainty for a probable improvement in TBUT with the PUFA intervention relative to placebo (four studies, 455 participants; MD 0.55, 95% CI 0.04 to 1.07 seconds). Effects on tear osmolarity and adverse events were unclear, with data only available from a single small study for each outcome. Omega-3 plus conventional therapy versus conventional therapy alone (two RCTs) For omega-3 plus conventional therapy versus conventional therapy alone, we found low certainty evidence suggesting an intergroup difference in symptoms favoring the omega-3 group (two studies, 70 participants; MD -7.16, 95% CI -13.97 to -0.34 OSDI units). Data could not be combined for all other outcomes. Long-chain omega-3 (EPA and DHA) versus omega-6 (five RCTs) For long-chain omega-3 versus omega-6 supplementation, we found moderate certainty evidence for a probable improvement in dry eye symptoms (two studies, 130 participants; MD -11.88, 95% CI -18.85 to -4.92 OSDI units). Meta-analysis was not possible for outcomes relating to ocular surface staining, Schirmer test or TBUT. We found low certainty evidence for a potential improvement in tear osmolarity (one study, 105 participants; MD -11.10, 95% CI -12.15 to -10.05 mOsmol/L). There was low level certainty regarding any potential effect on gastrointestinal side effects (two studies, 91 participants; RR 2.34, 95% CI 0.35 to 15.54). AUTHORS' CONCLUSIONS: Overall, the findings in this review suggest a possible role for long-chain omega-3 supplementation in managing dry eye disease, although the evidence is uncertain and inconsistent. A core outcome set would work toward improving the consistency of reporting and the capacity to synthesize evidence.


Asunto(s)
Síndromes de Ojo Seco/tratamiento farmacológico , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-6/uso terapéutico , Humanos , Gotas Lubricantes para Ojos/administración & dosificación , Soluciones Oftálmicas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA