Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 15(3)2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540360

RESUMEN

German chamomile (Matricaria chamomilla L.) and Roman chamomile (Chamaemelum nobile) are the two well-known chamomile species from the Asteraceae family. Owing to their essential oils and higher medicinal value, these have been cultivated widely across Europe, Northwest Asia, North America, and Africa. Regarding medicinal applications, German chamomile is the most commonly utilized variety and is frequently recognized as the "star among medicinal species". The insufficient availability of genomic resources may negatively impact the progression of chamomile industrialization. Chamomile's mitochondrial genome is lacking in extensive empirical research. In this study, we achieved the successful sequencing and assembly of the complete mitochondrial genome of M. chamomilla and C. nobile for the first time. An analysis was conducted on codon usage, sequence repeats within the mitochondrial genome of M. chamomilla and C. nobile. The phylogenetic analysis revealed a consistent positioning of M. chamomilla and C. nobile branches within both mitochondrial and plastid-sequence-based phylogenetic trees. Furthermore, the phylogenetic analysis also showed a close relationship between M. chamomilla and C. nobile within the clade comprising species from the Asteraceae family. The results of our analyses provide valuable resources for evolutionary research and molecular barcoding in chamomile.


Asunto(s)
Asteraceae , Genoma Mitocondrial , Matricaria , Aceites Volátiles , Matricaria/genética , Chamaemelum/genética , Filogenia , Genoma Mitocondrial/genética , Asteraceae/genética
2.
BMC Genomics ; 21(1): 169, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070270

RESUMEN

BACKGROUND: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolites - especially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses. RESULTS: We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense. CONCLUSION: This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.


Asunto(s)
Chamaemelum/genética , Chamaemelum/metabolismo , Matricaria/genética , Matricaria/metabolismo , Fitoquímicos/metabolismo , Terpenos/metabolismo , Transcriptoma , Vías Biosintéticas , Chamaemelum/química , Biología Computacional/métodos , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Matricaria/química , Anotación de Secuencia Molecular , Aceites Volátiles/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Análisis de Secuencia de ARN
3.
Genomics ; 112(2): 1055-1064, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31706023

RESUMEN

German chamomile and Roman chamomile are the two most widely known chamomile species due to the medicinal properties of volatile compounds from their flowers. We determined the volatile compound content of different organs of these two chamomiles, and found that main volatile compounds in German chamomile were terpenoids and those in Roman chamomile were esters. Furthermore, 24 tissues from two chamomiles were sequenced and analyzed by gene co-expression network. The results showed higher terpene synthase expression levels and more modules correlated with sesquiterpenoids in German chamomile, which may explain its high sesquiterpenoid content. In both chamomiles, unigenes in volatile compound-correlated modules were significantly enriched in pathways related to plant-pathogen interactions and circadian rhythm, demonstrating that volatile compounds of chamomiles are influenced by these factors. There were ten times more unigenes related to plant-pathogen interactions in German chamomile than in Roman chamomile, which indicates German chamomile has higher resistance to pathogens.


Asunto(s)
Chamaemelum/metabolismo , Matricaria/metabolismo , Terpenos/metabolismo , Transcriptoma , Chamaemelum/genética , Genes de Plantas , Matricaria/genética , Redes y Vías Metabólicas
4.
J Agric Food Chem ; 67(36): 10235-10244, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436988

RESUMEN

Tea provides a rich taste and has healthy properties due to its variety of bioactive compounds, such as theanine, catechins, and caffeine. Theanine is the most abundant free amino acid (40%-70%) in tea leaves. Key genes related to theanine biosynthesis have been studied, but relatively little is known about the regulatory mechanisms of theanine accumulation in tea leaves. Herein, we analyzed theanine content in tea (Camellia sinensis) and oil tea (Camellia oleifera) and found it to be higher in the roots than in other tissues in both species. The theanine content was significantly higher in tea than oil tea. To explore the regulatory mechanisms of theanine accumulation, we identified genes involved in theanine biosynthesis by RNA-Seq analysis and compared theanine-related modules. Moreover, we cloned theanine synthase (TS) promoters from tea and oil tea plants and found that a difference in TS expression and cis-acting elements may explain the difference in theanine accumulation between the two species. These data provide an important resource for regulatory mechanisms of theanine accumulation in tea plants.


Asunto(s)
Camellia sinensis/genética , Camellia/genética , Glutamatos/biosíntesis , Proteínas de Plantas/genética , Transcriptoma , Camellia/química , Camellia/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Glutamatos/análisis , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA