Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Integr Plant Biol ; 62(12): 1925-1941, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32584503

RESUMEN

Iron is an essential microelement for plant growth. After uptake from the soil, iron is chelated by ligands and translocated from roots to shoots for subsequent utilization. However, the number of ligands involved in iron chelation is unclear. In this study, we identified and demonstrated that GLU1, which encodes a ferredoxin-dependent glutamate synthase, was involved in iron homeostasis. First, the expression of GLU1 was strongly induced by iron deficiency condition. Second, lesion of GLU1 results in reduced transcription of many iron-deficiency-responsive genes in roots and shoots. The mutant plants revealed a decreased iron concentration in the shoots, and displayed severe leaf chlorosis under the condition of Fe limitation, compared to wild-type. Third, the product of GLU1, glutamate, could chelate iron in vivo and promote iron transportation. Last, we also found that supplementation of glutamate in the medium can alleviate cadmium toxicity in plants. Overall, our results provide evidence that GLU1 is involved in iron homeostasis through affecting glutamate synthesis under iron deficiency conditions in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glutamato Sintasa/metabolismo , Deficiencias de Hierro , Hierro/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glutamato Sintasa/genética , Ácido Glutámico/metabolismo
2.
Plant Cell Physiol ; 57(8): 1767-78, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27382128

RESUMEN

AtSPX3, responding to phosphate (Pi) deficiency by its expression, is an important gene involved in Pi homeostasis in Arabidopsis. To understand its transcriptional regulation, we characterized the AtSPX3 promoter by distal truncation, internal deletion and mutation of the predicted cis-elements, and identified multiple cis-elements responsive to Pi status. The P1BS (AtPHR-binding site) and AtMyb4 (putative MYB4-binding site) elements were two main cis-elements in the AtSPX3 promoter. P1BS is essential and has a dosage effect for activating expression of the gene under Pi deficiency, while the element AtMyb4 possesses a dual function: one is to enhance AtSPX3 expression in roots under Pi deficiency, and the other one is to repress AtSPX3 expression in shoots under both Pi deficiency and sufficiency. Moreover, we confirmed that AtPHR1, a key transcription factor in Pi homeostasis of plants, was required for the negative regulation function of the AtMyb4 element in shoots. Additionally, we also found that the AtSPX3 promoter had a length limitation for activating gene expression. Generally, our findings in this work are useful for understanding the molecular regulation mechanism of genes involved in Pi uptake and homeostasis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fósforo/deficiencia , Regiones Promotoras Genéticas/genética , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Genes Reporteros , Homeostasis , Fosfatos/deficiencia , Fosfatos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Plantones/citología , Plantones/genética , Plantones/fisiología , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Environ Geochem Health ; 35(2): 161-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22760687

RESUMEN

Optimizing the beneficial mineral elements in rice grains is of interest for rice breeders. To study the environmental effects on mineral accumulation in rice grains, we grew a double-haploid (DH) population derived from the cross between cultivars Chunjiang 06 (CJ06, a japonica rice) and TN1 (an indica rice) under two different ecological environments (Lingshui and Hangzhou, China) and determined the content of Ca, Fe, K, Mg, Mn, P, and Zn in brown rice. These contents show transgressive variation among the DH lines. Subsequently, the quantitative trait loci (QTLs) for mineral accumulation in rice grain were mapped on the chromosomes using CJ06/TN1 population. For the 7 mineral elements investigated, 23 and 9 QTLs were identified for Lingshui and Hangzhou, respectively. Of these, 24 QTLs were reported for the first time in this study and 8 QTLs are consistent with previous reports. Only 2 QTLs for Mg accumulation have been detected in both environments, indicating that mineral accumulation QTLs in rice grains are largely environment dependent. Additionally, co-localizations of QTLs for Mn and Zn, Mg and P, and Mg and Mn accumulation have been observed, implying that these loci might be involved in the accumulation of different elements. Furthermore, the QTLs for the accumulation of Fe, K, Mg, Mn, P, and Zn were mapped to a region close to each other on chromosomes 8 and 9, suggesting that clusters of genes exist on chromosomes 8 and 9. Further characterization of these QTLs will provide a better understanding of the molecular mechanism responsible for mineral accumulation in rice grains.


Asunto(s)
Ambiente , Minerales/metabolismo , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo , Cruzamiento , Calcio/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Hierro/metabolismo , Magnesio/metabolismo , Manganeso/metabolismo , Fósforo/metabolismo , Potasio/metabolismo , Zinc/metabolismo
4.
Plant Cell Physiol ; 52(6): 967-82, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21511719

RESUMEN

Thiamine is a key primary metabolite which is necessary for the viability of all organisms. It is a dietary requirement for mammals because only prokaryotes, fungi and plants are thiamine prototrophs. In contrast to the well documented biosynthetic mechanism in bacteria, much remains to be deciphered in plants. In this work, a tomato thiamine-auxotrophic (thiamineless, tl) mutant was characterized. The tl mutant occurs due to inactivation of LeTHIC transcription as a result of insertion of a large unknown DNA fragment in its 5'-untranslated region. Expression of wild-type LeTHIC in tl plants was able to complement the mutant to wild type. LeTHIC possessed the same function as E.cTHIC [an Escherichia coli 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase involved in synthesis of the pyrimidine moiety of thiamine] because expression of LeTHIC rescued THIC-deficient strains of E. coli under culture conditions without thiamine supplementation, suggesting that plants employ a bacteria-like route of pyrimidine moiety synthesis. LeTHIC is an Fe-S cluster protein localized in chloroplasts, and Fe is required for maintenance of its enzyme activity because Fe deficiency resulted in a significant reduction of thiamine content in tomato leaves. Further, we also showed that the expression of LeTHIC is tightly regulated at the transcriptional and post-transcriptional level by multiple factors, such as light, Fe status and thiamine pyrophosphate (TPP)-riboswitch. The results clearly demonstrated that a feedback regulation mechanism is involved in synthesis of the pyrimidine moiety for controlling thiamine synthesis in tomato. Our results provide a new insight into understanding the molecular mechanism of thiamine biosynthesis in plants.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Tiamina/biosíntesis , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Cloroplastos/metabolismo , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Proteínas Hierro-Azufre/genética , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , Fenotipo , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Pirimidinas/biosíntesis , Riboswitch , Análisis de Secuencia de Proteína , Tiamina Pirofosfato/metabolismo
5.
Cell Res ; 18(5): 566-76, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18332905

RESUMEN

Thiamine (vitamin B(1)) is an essential compound for organisms. It contains a pyrimidine ring structure and a thiazole ring structure. These two moieties of thiamine are synthesized independently and then coupled together. Here we report the molecular characterization of AtTHIC, which is involved in thiamine biosynthesis in Arabidopsis. AtTHIC is similar to Escherichia coli ThiC, which is involved in pyrimidine biosynthesis in prokaryotes. Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E. coli. Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thic1 showed albino (white leaves) and lethal phenotypes under the normal culture conditions. The thic1 mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression of AtTHIC cDNA. Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts. AtTHIC was strongly expressed in leaves, flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine. In conclusion, AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis, and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Hierro-Azufre/metabolismo , Tiamina/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Northern Blotting , Difosfatos/química , Difosfatos/metabolismo , Escherichia coli/genética , Prueba de Complementación Genética , Proteínas Hierro-Azufre/clasificación , Proteínas Hierro-Azufre/genética , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tiamina/química
6.
Plant Mol Biol ; 54(1): 125-36, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15159639

RESUMEN

Tomato is a model plant for studying molecular mechanisms of iron uptake and metabolism in strategy I plants (dicots and non-graminaceous monocots). Reduction of ferric to ferrous iron on the root surface is an obligatory process for iron acquisition from soil in these plants. LeFRO1 encoding an Fe(III)-chelate reductase protein was isolated from the tomato genome. We show that expression of LeFRO1 in yeast increases Fe(III)-chelate reductase activity. In a transient expression analysis we found that LeFRO1 protein was targeted on the plasma membrane. LeFRO1 transcript was detected in roots, leaves, cotyledons, flowers and young fruits by RT-PCR analysis. Abundance of LeFRO1 mRNA was much lower in young fruits than in other tissues. The transcription intensity of LeFRO1 in roots is dependent on the iron status whereas it is constitutively expressed in leaves. These results indicate that LeFRO1 is required in roots and shoots as well as in reproductive organs for iron homeostasis and that its transcription in roots and shoots is regulated by different control mechanisms. The expression of LeFRO1 was disrupted in the iron-inefficient mutants chloronerva and T3238 fer, indicating that FER and CHLN genes are involved in the regulation of LeFRO1 expression in tomato roots. The differential expression of LeFRO1 and LeIRT1 (an iron-regulated metal transporter gene in tomato) in roots of T3238 fer under iron-deficient and -sufficient conditions suggests that the FER gene may regulate expression of LeFRO1 more directly than that of LeIRT1 in tomato roots.


Asunto(s)
FMN Reductasa/genética , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Southern Blotting , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Exones , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genoma de Planta , Proteínas Fluorescentes Verdes , Intrones , Deficiencias de Hierro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Cebollas/citología , Cebollas/genética , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA