Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biosyst ; 6(11): 2316-2324, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20835433

RESUMEN

There is an urgent need for new drugs against tuberculosis which annually claims 1.7-1.8 million lives. One approach to identify potential leads is to screen in vitro small molecules against Mycobacterium tuberculosis (Mtb). Until recently there was no central repository to collect information on compounds screened. Consequently, it has been difficult to analyze molecular properties of compounds that inhibit the growth of Mtb in vitro. We have collected data from publically available sources on over 300 000 small molecules deposited in the Collaborative Drug Discovery TB Database. A cheminformatics analysis on these compounds indicates that inhibitors of the growth of Mtb have statistically higher mean logP, rule of 5 alerts, while also having lower HBD count, atom count and lower PSA (ChemAxon descriptors), compared to compounds that are classed as inactive. Additionally, Bayesian models for selecting Mtb active compounds were evaluated with over 100 000 compounds and, they demonstrated 10 fold enrichment over random for the top ranked 600 compounds. This represents a promising approach for finding compounds active against Mtb in whole cells screened under the same in vitro conditions. Various sets of Mtb hit molecules were also examined by various filtering rules used widely in the pharmaceutical industry to identify compounds with potentially reactive moieties. We found differences between the number of compounds flagged by these rules in Mtb datasets, malaria hits, FDA approved drugs and antibiotics. Combining these approaches may enable selection of compounds with increased probability of inhibition of whole cell Mtb activity.


Asunto(s)
Antituberculosos/análisis , Antituberculosos/farmacología , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Antituberculosos/química , Teorema de Bayes , Bibliotecas de Moléculas Pequeñas/química
2.
Curr Opin Chem Biol ; 10(4): 380-3, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16829159

RESUMEN

Intellectual property considerations decrease research productivity in subtle and unanticipated ways. Chemical probe exchange between Pharma and academia is hindered by academic IP interests. These are perceived as a subtle nuisance by the academic researcher. Novel ligands for oral targets are historically few and numbers of economically attractive oral drug targets are limited. Economically speculative targets lie in the academic domain but the medicinal chemistry to explore these in a drug discovery sense lies in Pharma and cooperation between the two is hindered by very different academic and Pharma views on chemical quality. Tools and probes for academic target validation can accommodate looser chemical quality criteria as opposed to the very strict chemical quality criteria required in Pharma drug discovery.


Asunto(s)
Academias e Institutos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/economía , Industria Farmacéutica , Propiedad Intelectual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA