Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 56: 83-93, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668357

RESUMEN

BACKGROUND: Cardiac atrophy and reduced cardiac distensibility have been reported following space flight. Cardiac function is correspondingly regulated in response to changes in loading conditions. Panax quinquefolium saponin (PQS) improves ventricular remodeling after acute myocardial infarction by alleviating endoplasmic reticulum stress and Ca2+overload. However, whether PQS can ameliorate cardiac atrophy following exposure to simulated microgravity remains unknown. PURPOSE: To explore the protective role of PQS in cardiac remodeling under unloading conditions and its underlying mechanisms. METHODS: Hindlimb unloading (HU) model was used to simulate unloading induced cardiac remodeling. Forty-eight male rats were randomly assigned to four groups, including control, PQS, HU and HU + PQS. At 8 weeks after the experiment, cardiac structure and function, serum levels of Creatine Kinase-MB (CK-MB), Cardiactroponin T (cTnT), ischemia modified albumin (IMA), and cardiomyocyte apoptosis were measured. Network pharmacology analysis was used to predict the targets of the six major constituents of PQS, and the signaling pathways they involved in were analyzed by bioinformatics methods. Changes in the key proteins involved in the protective effects of PQS were further confirmed by Western Blot. RESULTS: Simulated microgravity led to increases in serum levels of CK-MB, cTnT and IMA, remodeling of cardiac structure, impairment of cardiac function, and increased cardiomyocyte apoptosis as compared with control. PQS treatment significantly reduced serum levels of CK-MB, cTnT and IMA, improved the impaired cardiac structure and function, and decreased cardiomyocyte apoptosis induced by unloading. The activation of AMPK and inhibition of Erk1/2 and CaMKII/HDAC4 were demonstrated in the cardiocytes of HU rats after PQS treatment. CONCLUSION: PQS provides protection against cardiac remodeling induced by simulated microgravity, partly resulting from changes in the signaling pathways related to energy metabolism reduction, calcium overloading and cell apoptosis.


Asunto(s)
Cardiotónicos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Saponinas/farmacología , Remodelación Ventricular/efectos de los fármacos , Ingravidez/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/sangre , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Infarto del Miocardio/etiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Albúmina Sérica/análisis , Albúmina Sérica Humana , Transducción de Señal/efectos de los fármacos
2.
Gen Comp Endocrinol ; 223: 139-47, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26002036

RESUMEN

Peroxisome proliferator activated receptor gamma (PPARγ) is a master regulator in lipid metabolism and widely exists in vertebrates. However, the molecular structure and transcriptional activity of PPARγ in fish are still unclear. This study cloned PPARγ from Nile tilapia (Oreochromis niloticus) referred as NtPPARγ and transfected the NtPPARγ plasmids into HEK-293 cells to explore its mechanism of transcriptional regulation in fish. The expression of NtPPARγ was compared in fed and fasted fish. Two transcripts of NtPPARγ varied at the 5'-untranslated region and the DNA binding domain was highly conserved. Thirty-nine amino acid residues in the ligand binding domain in Nile tilapia were different from those in human. Two transcripts showed different expression profiles in 11 tissues, but both were highly expressed in liver, intestine and kidney. The transcriptional activity assay showed that NtPPARγ collaborates with retinoid X-receptor α (NtRXRα) to regulate the expression of Nile tilapia fatty acid binding protein 4 (FABP4), the compartment of which have been identified as the target gene of PPARγ in human. In the fish fasting trial, the mRNA expression of NtPPARγ1 and NtPPARγ2 in intestine and liver at 3h post-feeding (HPF) was lower than those at 8 HPF, 24 HPF and in fish fasted for 36h, but was relatively stable in kidney among different feeding treatments. In conclusion, the DNA binding domain in PPARγ was highly conserved, while the ligand binding domain was moderately conserved. In Nile tilapia, the PPARγ collaborates with RXRα to perform transcriptional regulation of FABP4 at least in vitro. The plasmid system established in this study along with a cell line from Nile tilapia will be useful tools for the further functional study of PPARγ in fish.


Asunto(s)
Cíclidos/metabolismo , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , PPAR gamma/metabolismo , Receptor alfa X Retinoide/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Clonación Molecular , ADN Complementario/genética , Proteínas de Peces/genética , Células HEK293 , Humanos , Datos de Secuencia Molecular , PPAR gamma/química , PPAR gamma/genética , Filogenia , Conformación Proteica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor alfa X Retinoide/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA