RESUMEN
BACKGROUND: Neuroinflammation plays a pivotal role in the acute progression of cerebral ischemia/reperfusion injury (I/RI). We previously reported that genistein-3'-sodium sulfonate (GSS), a derivative from the extract of the phytoestrogen genistein (Gen), protects cortical neurons against focal cerebral ischemia. However, the molecular mechanism underlying the neuroprotective effects exerted by GSS remains unclear. PURPOSE: The present study focused on the anti-inflammatory effects of GSS following I/RI in rats. STUDY DESIGN: Randomized controlled trial. METHODS: The tMCAO rat model and LPS-stimulated BV2 in vitro model were used. Longa's scare was used to observe neurological function. TTC staining and Nissl staining were used to evaluate brain injury. ELISA, qRT-PCR, Western blotting and immunofluorescent staining methods were used to detect cytokine concentration, mRNA level, protein expression and location. RESULTS: GSS treatment improves neurological function, reduces the volume of cerebral infarction, attenuates proinflammatory cytokines and inactivates the phosphorylation of JAK2 and STAT3 in I/RI rats. Furthermore, GSS increased the expression of α7nAChR. More importantly, the neuroprotective, anti-inflammatory and inhibiting JAK2/STAT3 signaling pathway effects of GSS were counteracted in the presence of alpha-bungarotoxin (α-BTX), an α7nAChR inhibitor, suggesting that α7nAChR is a potential target associated with the anti-inflammatory effects of GSS in the I/RI rats. GSS also inhibited BV2 cells from releasing IL-1ß via the α7nAChR pathway after LPS stimulation. CONCLUSION: GSS protects against cerebral I/RI through the expression of α7nAChR and inhibition of the JAK2/STAT3 pathway. Our findings provide evidence for the role of the cholinergic anti-inflammatory pathway in neuroinflammation and uncover a potential novel mechanism for GSS treatment in ischemic stroke. The downstream signals of GSS, α7nAChR- JAK2/STAT3 could also be potential targets for the treatment of I/RI.
Asunto(s)
Isquemia Encefálica , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral , Genisteína/farmacología , Janus Quinasa 2/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Sodio , Receptor Nicotínico de Acetilcolina alfa 7/metabolismoRESUMEN
Microglial M1 depolarization mediated prolonged inflammation contributing to brain injury in ischemic stroke. Our previous study revealed that Genistein-3'-sodium sulfonate (GSS) exerted neuroprotective effects in ischemic stroke. This study aimed to explore whether GSS protected against brain injury in ischemic stroke by regulating microglial M1 depolarization and its underlying mechanisms. We established transient middle cerebral artery occlusion and reperfusion (tMCAO) model in rats and used lipopolysaccharide (LPS)-stimulated BV2 microglial cells as in vitro model. Our results showed that GSS treatment significantly reduced the brain infarcted volume and improved the neurological function in tMCAO rats. Meanwhile, GSS treatment also dramatically reduced microglia M1 depolarization and IL-1ß level, reversed α7nAChR expression, and inhibited the activation of NF-κB signaling in the ischemic penumbra brain regions. These effects of GSS were further verified in LPS-induced M1 depolarization of BV2 cells. Furthermore, pretreatment of α7nAChR inhibitor (α-BTX) significantly restrained the neuroprotective effect of GSS treatment in tMCAO rats. α-BTX also blunted the regulating effects of GSS on neuroinflammation, M1 depolarization and NF-κB signaling activation. This study demonstrates that GSS protects against brain injury in ischemic stroke by reducing microglia M1 depolarization to suppress neuroinflammation in peri-infarcted brain regions through upregulating α7nAChR and thereby inhibition of NF-κB signaling. Our findings uncover a potential molecular mechanism for GSS treatment in ischemic stroke.
Asunto(s)
Infarto Encefálico/prevención & control , Genisteína/análogos & derivados , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Genisteína/farmacología , Genisteína/uso terapéutico , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Ratones , Enfermedades Neuroinflamatorias/prevención & control , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacosRESUMEN
A simple, inexpensive micellar electrokinetic chromatography (MEKC) method with UV detection was used to determine seven catechins and one xanthine (caffeine) in tea. All the compounds were successfully separated (15kV) within a 15-min migration period with a high number of theoretical plates (>8.0×10(4)) in a running buffer (pH 7) containing 10mmoll(-1) sodium tetraborate, 4mmoll(-1) sodium phosphate, and 25mmoll(-1) SDS. The regression lines of all standard catechins were linear within the range of 0.03-4µgml(-1). Green tea infused at 95°C for 10min showed higher levels of catechins (especially epigallocatechin galate, epicatechin gallate, and epicatechin) than tea infused at 80°C. In addition, major differences were observed in the levels of catechins in the first and second infusions (both brewed at 95°C for 10min). Finally, green tea leaves were infused separately with tap water, deionised water, spring water, reverse osmosis water, and distilled water at 95°C, and the catechin content of the infusions was investigated by the proposed method. In the infusion brewed with tap water, catechins appeared to be epimerisation from the epistructure to the nonepistructure. This epimerisation may take place more readily in tap water than in distilled water owing to the complexity of the ions present in tap water.