Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 269: 113747, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33359185

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liang-Ge-San (LGS), a traditional Chinese medicine (TCM) formula, is usually used in acute inflammatory diseases in China. AIM OF THE STUDY: This study aims to detect the optimal combination of anti-inflammatory components from LGS. MATERIALS AND METHODS: Four mainly representative components (phillyrin, emodin, baicalin, and liquiritin) from LGS were chosen. The optimal combination was investigated by orthogonal design study. Zebrafish inflammation model was established by lipopolysaccharide (LPS)-yolk microinjection, and then the anti-inflammatory activities of different combinations were determined by survival analysis, changes on inflammatory cells infiltration, the MyD88/NF-κB and MAPK pathways and inflammatory cytokines production. RESULTS: The different combinations of bioactive ingredients from LGS significantly protected zebrafish from LPS-induced inflammation, as evidenced by decreased recruitment of macrophages and neutrophils, inhibition of the MyD88/NF-κB and MAPK pathways and down-regulation of TNF-α and IL-6. Among them, the combination group 8 most significantly protected against LPS. The combination of group 8 is: 0.1 µM of emodin, 2 µM of baicalin, 20 µM of phillyrin and 12.5 µM of liquiritin. CONCLUSION: The optimized combination group 8 exerts the most significant anti-inflammatory activity by inhibiting the recruitment of inflammatory cells, activation of the MyD88/NF-κB and MAPK pathways and the secretion of pro-inflammatory cytokines. This present study provides pharmacological evidences for the further development of new modern Chinese drug from LGS to treat acute inflammatory diseases, but indicated the use of zebrafish in the screening of components from formulas.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Emodina/farmacología , Emodina/uso terapéutico , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Inflamación/inducido químicamente , Interleucina-6/genética , Larva/citología , Larva/efectos de los fármacos , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Medicina Tradicional China , Factor 88 de Diferenciación Mieloide/antagonistas & inhibidores , FN-kappa B/metabolismo , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Saco Vitelino/citología , Saco Vitelino/efectos de los fármacos , Saco Vitelino/inmunología , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores
2.
Toxicol Appl Pharmacol ; 407: 115252, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32987027

RESUMEN

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa, was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Glicósidos/farmacología , MicroARNs/biosíntesis , Monocitos/efectos de los fármacos , Alveolos Pulmonares/citología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Animales , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/biosíntesis , Relación Dosis-Respuesta a Droga , Glicósidos/uso terapéutico , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Alveolos Pulmonares/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Clin Sci (Lond) ; 134(19): 2549-2563, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32975280

RESUMEN

Acute lung injury (ALI) is a life-threatening disease without effective pharmacotherapies, so far. Forsythia suspensa is frequently used in the treatment of lung infection in traditional Chinese medicine. In search for natural anti-inflammatory components, the activity and the underlying mechanism of Forsythoside A (FA) from Forsythia suspensa were explored. In the present paper, BALB/c mice and murine RAW 264.7 cells were stimulated by LPS to establish inflammation models. Data showed that FA inhibited the production of TNF-α and IL-6 and the activation of STAT3 in LPS-stimulated RAW 264.7 cells. Additionally, FA increased the expression level of microRNA-124 (miR-124). Furthermore, the inhibitory effect of FA on STAT3 was counteracted by the treatment of miR-124 inhibitor. Critically, FA ameliorated LPS-induced ALI pathological damage, the increase in lung water content and inflammatory cytokine, cells infiltration and activation of the STAT3 signaling pathway in BALB/c mice. Meanwhile, FA up-regulated the expression of miR-124 in lungs, while administration with miR-124 inhibitor attenuated the protective effects of FA. Our results indicated that FA alleviates LPS-induced inflammation through up-regulating miR-124 in vitro and in vivo. These findings indicate the potential of FA and miR-124 in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Glicósidos/farmacología , MicroARNs/genética , Sustancias Protectoras/farmacología , Regulación hacia Arriba/genética , Animales , Glicósidos/química , Inflamación/genética , Inflamación/patología , Interleucina-6/metabolismo , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Modelos Biológicos , Sustancias Protectoras/química , Células RAW 264.7 , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
J Ethnopharmacol ; 249: 112427, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778782

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liang-Ge-San (LGS) is a traditional Chinese medicine formula that commonly used in acute inflammatory diseases. However, the anti-inflammatory effects and the underlying mechanisms of LGS are not fully studied. AIM OF THE STUDY: This study aims to investigate the anti-inflammatory activity and explore the underlying mechanisms of LGS in zebrafish and cell inflammation models. MATERIALS AND METHODS: LPS-induced zebrafish inflammation model was established by LPS-yolk microinjection. The protective effect of LGS on zebrafish injected with LPS was observed using survival analysis. Infiltration of inflammatory cells was determined by H&E staining assay. Expression levels of key inflammatory cytokines TNF-α and IL-6 were measured by q-PCR assay. Recruitment of neutrophils and macrophages were observed by fluorescence microscopy, SB staining and NR staining. In vitro anti-inflammatory effects of LGS were evaluated on LPS-stimulated RAW 264.7 cells. The generation of IL-6 and TNF-α was detected by ELISA. The protein expression levels of JNK, p-JNK (Thr183/Tyr185), Nur77 and p-Nur77 (Ser351) were determined by Western blotting. Finally, two additional inflammatory models in zebrafish, which were induced by CuSO4 or tail fin injury, were also established and the recruitment of neutrophils and macrophages were observed for the determination of the anti-inflammatory activity of LGS. RESULTS: LGS protected zebrafish against LPS-induced death and dose-dependently inhibited LPS-induced acute inflammatory response in zebrafish, as indicated by increased survival rate, reduced infiltration of inflammatory cells, decreased recruitment of macrophages and neutrophils, and downregulated expression levels of TNF-α and IL-6. Additionally, LGS inhibited the secretion of TNF-α and IL-6, increased the expression of Nur77, and reduced the expression of p-Nur77 (Ser351) and p-JNK (Thr183/Tyr185) in LPS-stimulated RAW 264.7 cells. The anti-inflammatory action of LGS was also observed in another two zebrafish inflammation models, which was supported by the inhibition on neutrophils and macrophages recruitment. CONCLUSION: The present study demonstrates that LGS possesses anti-inflammatory activity in zebrafish inflammation models and LPS-stimulated RAW 264.7 cells, which is related to the inhibition on p-JNK and p-Nur77. This finding provides a pharmacological basis for LGS in the control of inflammatory disorder.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Enfermedad Aguda/terapia , Animales , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Humanos , Inflamación/inmunología , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Pez Cebra
5.
Front Pharmacol ; 10: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803051

RESUMEN

Background: Acute lung injury (ALI) is a life-threatening disease without effective chemotherapy at present. Liang-Ge-San (LGS) is a famous traditional Chinese medicine formula, which is used to treat ALI in China. However, only a few studies have addressed the mechanisms of LGS in ALI. Purpose: To evaluate the anti-inflammatory effects of LGS on lipopolysaccharide (LPS)-induced ALI, and to explore its underlying molecular mechanism. Methods: Murine RAW264.7 cells were treated with LGS and LPS (1 µg/ml). The generation of IL-6, TNF-α, IL-1ß was detected by ELISA. The protein expressions of STAT3 and P-STAT3 (Tyr705) were determined by Western blotting and fluorescence confocal microscopy. STAT3 transcriptional activity was investigated by luciferase reporter gene assay. qPCR was used to detect the expressions of microRNA-21 (miR-21), STAT3, and IL-6. DSS cross-linking assay was used to assess the change of STAT3 dimer. In vivo anti-inflammatory effects of LGS were evaluated in an ALI mouse model induced by tracheal instillation of LPS (3 mg/kg). The anti-ALI effects were evaluated by ELISA, qPCR, Western blotting, BCA, and H&E assays. Results: LGS suppressed LPS-stimulated IL-6, TNF-α, and IL-1ß generation in murine macrophages RAW264.7. Moreover, LGS down-regulated protein levels of P-STAT3 (Tyr705) and STAT3, inhibited STAT3 transcriptional activity, and up-regulated miR-21. Furthermore, blockage of miR-21 antagonized the inhibitory effects of LGS on the production of IL-6 and the expressions of P-STAT3 (Tyr705) and STAT3 as well as the formation of STAT3 dimer. Critically, LGS up-regulated the expression of miR-21 and inhibited the protein expressions of STAT3 and P-STAT3 (Tyr705) to reduce the release of IL-6 and inflammatory cell infiltration as well as the degree of edema in LPS-induced ALI mice. Conclusion: LGS inhibited LPS-induced ALI through up-regulating miR-21 and subsequently inhibiting the STAT3 signaling pathway, thereby decreasing the release of IL-6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA