Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 77(8): 1890-1895, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32356168

RESUMEN

In this study, a wild-type Pseudomonas aeruginosa strain KT1115 with the capability of converting rapeseed oils into di-rhamnolipids, a class of biosurfactants with extensive application potential, was successfully isolated and characterized. Di-rhamnolipids production by microorganism culture provided a mild, eco-friendly, and secure approach for surfactants production instead of conventional chemical synthesis. However, few studies have been attempted to explore the metabolic mechanism behind the high di-rhamnolipids production by P. aeruginosa. Here, we presented the graft genome of a wild-type P. aeruginosa strain KT1115, with emphasis on the analysis of oils metabolism and rhamnolipid synthesis. The availability of the genome sequence provides additional insight into the genetic mechanism enhancing di-rhamnolipids biosynthesis.


Asunto(s)
Genoma Bacteriano , Glucolípidos/biosíntesis , Redes y Vías Metabólicas/genética , Pseudomonas aeruginosa/genética , Aceite de Brassica napus/metabolismo , Pseudomonas aeruginosa/metabolismo , Tensoactivos/metabolismo
2.
ACS Nano ; 13(11): 12638-12652, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31625721

RESUMEN

Photodynamic therapy (PDT) is a clinical cancer treatment modality based on the induction of therapeutic reactive oxygen species (ROS), which can trigger immunogenic cell death (ICD). With the aim of simultaneously improving both PDT-mediated intracellular ROS production and ICD levels, we designed a serum albumin (SA)-coated boehmite ("B"; aluminum hydroxide oxide) organic-inorganic scaffold that could be loaded with chlorin e6 (Ce6), a photosensitizer, and a honey bee venom melittin (MLT) peptide, denoted Ce6/MLT@SAB. Ce6/MLT@SAB was anchored by a boehmite nanorod structure and exhibited particle size of approximately 180 nm. Ce6/MLT@SAB could significantly reduce hemolysis relative to that of free MLT, while providing MLT-enhanced PDT antitumor effects in vitro. Compared with Ce6@SAB, Ce6/MLT@SAB improved Ce6 penetration of cancer cells both in vitro and in vivo, thereby providing enhanced intracellular ROS generation with 660 nm light treatment. Following phototreatment, Ce6/MLT@SAB-treated cells displayed significantly improved levels of ICD and abilities to activate dendritic cells. In the absence of laser irradiation, multidose injection of Ce6/MLT@SAB could delay the growth of subcutaneous murine tumors by more than 60%, compared to controls. When combined with laser irradiation, a single injection and phototreatment with Ce6/MLT@SAB eradicated one-third of subcutaneous tumors in treated mice. The addition of an immune checkpoint blockade to Ce6/MLT@SAB phototreatment further augmented antitumor effects, generating increased numbers of CD4+ and CD8+ T cells in tumors with concomitant reduction of myeloid-derived suppressor cells.


Asunto(s)
Antineoplásicos , Inmunoterapia/métodos , Meliteno , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Muerte Celular Inmunogénica/efectos de los fármacos , Meliteno/química , Meliteno/farmacocinética , Meliteno/farmacología , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/patología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/farmacología
3.
BMC Complement Altern Med ; 17(1): 531, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29237430

RESUMEN

BACKGROUND: Quercetin (QCT) is a flavonol present in many vegetables, it is proved to show chemo preventive effect against lung, cervical, prostate, breast and colon cancer due to its anti-inflammatory, anti-tumor and anti-oxidant property. Looking into the reported chemo-preventive effect we speculated antitumor activity in retinoblastoma (RB) Y79 cells, we also studied the molecular mechanism for antitumor activity. METHODS: The effect of QCT on Y79 cell viability count was done by cell counting kit, cell cycle distribution, apoptosis studies and mitochondrial membrane potential was evaluated by flow cytometry. Protein expression was done by western blot analysis. RESULTS: The outcomes of study showed that QCT reduced Y79 cell viability and caused arrest of G1 phase in cell cycle via decreasing the expression levels of cyclin-dependent kinase (CDK)2/6 and cyclin D3 and by increasing the levels of both CDK inhibitor proteins p21 and p27. Apoptosis of Y79 cells mediated by QCT occurred via activation of both caspases-3/-9. Flow cytometry studies showed that QCT caused collapse in mitochondrial membrane potential (ΔΨm) in Y79 cells. Western blot studies confirmed that QCT brought about phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). We also established that inhibitors of JNK and p38 MAPK suppressed QCT mediated activation of both caspases-3/-9 and subdued the apoptosis of cancerous Y79 cells. CONCLUSION: All the results of the study suggest that QCT induced the apoptosis of Y79 cells via activation of JNK and p38 MAPK pathways, providing a novel treatment approach for human RB.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quercetina/farmacología , Retinoblastoma/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA