Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 6(1): 664-672, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463219

RESUMEN

Local resection or ablation remains an important approach to treat drug-resistant central neurological disease. Conventional surgical approaches are designed to resect the diseased tissues. The emergence of photothermal therapy (PTT) offers a minimally invasive alternative. However, their poor penetration and potential off-target effect limit their clinical application. Here, polydopamine nanoparticles (PDA-NPs) were prepared and characterized. Studies were performed to evaluate whether PDA-NPs combined with near-infrared (NIR) light can be used to ablate deep brain structures in vitro and in vivo. PDA-NPs were prepared with a mean diameter of ∼150 nm. The particles show excellent photothermal conversion efficiency. PDA-NPs did not show remarkable cytotoxicity against neuronal-like SH-SY5Y cell lines. However, it can cause significant cell death when combined with NIR irradiation. Transcranial NIR irradiation after PDA-NPs administration induced enhanced local hyperthermia as compared with NIR alone. Local temperature exceeded 60 °C after 6 min of irradiation plus PDA while it can only reach 48 °C with NIR alone. PTT with PDA (10 mg/mL, 3 µL) and NIR (1.5 W/cm2) can ablate deep brain structures precisely with an ablation volume of ∼6.5 mm3. Histological analysis confirmed necrosis and apoptosis in the targeted area. These results demonstrate the potential of NP-assisted PTT for the treatment against nontumorous central neurological diseases.


Asunto(s)
Nanopartículas , Fototerapia , Encéfalo/cirugía , Indoles , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA