Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 471-479, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38116615

RESUMEN

The application of selenium nanoparticle (SeNP)-based fertilizers can cause SeNPs to enter the soil environment. Considering the possible transformation of SeNPs and the species-dependent toxicity of selenium (Se), accurate analysis of SeNPs and other Se species present in the soil would help rationally assess the potential hazards of SeNPs to soil organisms. Herein, a novel method for speciation of SeNPs and other Se species in soil was established. Under the optimized conditions, SeNPs, selenite, selenate, and seleno amino acid could be simultaneously extracted from the soil with mixtures of tetrasodium pyrophosphate (5 mM) and potassium dihydrogen phosphate (1.2 µM), while inert Se species (mainly metal selenide) remained in the soil. Then, extracted SeNPs can be effectively captured by a nylon membrane (0.45 µm) and quantified by inductively coupled plasma mass spectrometry (ICP-MS). Other extracted Se species can be separated and quantified by high-performance liquid chromatography coupled with ICP-MS. Based on the difference between the total Se contents and extracted Se contents, the amount of metal selenide can be calculated. The limits of detection of the method were 0.02 µg/g for SeNPs, 0.05 µg/g for selenite, selenate, and selenocystine, and 0.25 µg/g for selenomethionine, respectively. Spiking experiments also showed that our method was applicable to real soil sample analysis. The present method contributes to understanding the speciation of Se in the soil environment and further estimating the occurrence and application risks of SeNPs.


Asunto(s)
Nanopartículas , Compuestos de Selenio , Selenio , Selenio/análisis , Ácido Selénico , Suelo/química , Compuestos de Selenio/química , Ácido Selenioso
2.
J Environ Sci (China) ; 130: 14-23, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37032031

RESUMEN

The application of selenium nanoparticles (SeNPs) as nanofertilizers may lead to the release of SeNPs into aquatic systems. However, the environmental behavior of SeNPs is rarely studied. In this study, using alginate-coated SeNPs (Alg-SeNPs) and polyvinyl alcohol-coated SeNPs (PVA-SeNPs) as models, we systematically investigated the aggregation and stability of SeNPs under various water conditions. PVA-SeNPs were highly stable in mono- and polyvalent electrolytes, probably due to the strong steric hindrance of the capping agent. Alg-SeNPs only suffered from a limited increase in size, even at 2500 mmol/L NaCl and 200 mmol/L MgCl2, while they underwent apparent aggregation in CaCl2 and LaCl3 solutions. The binding of Ca2+ and La3+ with the guluronic acid part in alginate induced the formation of cross-linking aggregates. Natural organic matter enhanced the stability of Alg-SeNPs in monovalent electrolytes, while accelerated the attachment of Alg-SeNPs in polyvalent electrolytes, due to the cation bridge effects. The long-term stability of SeNPs in natural water showed that the aggregation sizes of Alg-SeNPs and PVA-SeNPs increased to several hundreds of nanometers or above 10 µm after 30 days, implying that SeNPs may be suspended in the water column or further settle down, depending on the surrounding water chemistry. The study may contribute to the deep insight into the fate and mobility of SeNPs in the aquatic environment. The varying fate of SeNPs in different natural waters also suggests that the risks of SeNPs to organisms living in diverse depths in the aquatic compartment should be concerned.


Asunto(s)
Nanopartículas , Selenio , Nanopartículas/química , Electrólitos/química , Alginatos , Agua
3.
Anal Chem ; 94(47): 16328-16336, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36378246

RESUMEN

Application of selenium nanoparticle (SeNP)-based fertilizers results in the release of SeNPs to aquatic systems, where SeNPs may transform into inorganic selenite (Se(IV)) and selenate (Se(VI)) with higher toxicity. However, methods for the speciation analysis of different Se species are lacking, hindering the accurate assessment of the risks of SeNPs. Herein, for the first time, a Triton X-45 (TX-45)-based dual-cloud point extraction (CPE) method was established for the selective determination of SeNPs, Se(IV), and Se(VI) in water. TX-45 can adsorb on the surface of SeNPs and facilitate the extraction of SeNPs into the lower TX-45-rich phase in the first CPE, while Se(VI) and Se(IV) retain in the upper aqueous phase. In the second CPE, Se(IV) can selectively associate with diethyldithiocarbamate and be concentrated in the TX-45-rich phase, whereas Se(VI) remains in the upper phase. Different Se species can be isolated and then quantified by ICP-MS. The presence of coexisting ions and dissolved organic matter (0-30 mg C/L) did not interfere with extraction and separation. The feasibility of the presented method was confirmed by the analysis of natural water samples, with a detection limit of 0.03 µg/L and recoveries in the ranges of 61.1-104, 65.5-113, and 80.3-131% for SeNPs, Se(IV), and Se(VI), respectively. This study aims to provide an effective method to track the fate and transformation of SeNPs in aquatic systems and further contribute to estimating the potential risks of SeNPs to environmental organisms and human bodies.


Asunto(s)
Nanopartículas , Selenio , Humanos , Selenio/análisis , Ditiocarba , Octoxinol , Agua
4.
J Environ Sci (China) ; 115: 286-293, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969456

RESUMEN

The creation of an environmentally friendly synthesis method for silver nanomaterials (AgNPs) is an urgent concern for sustainable nanotechnology development. In the present study, a novel straightforward and green method for the preparation of silver nanoparticle/reduced graphene oxide (AgNP/rGO) composites was successfully developed through the combination of phytosynthesis, continuous flow synthesis and microwave-assistance. Oriental persimmon (Diospyros kaki Thunb.) extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites. The experimental parameters were optimized and the morphologies of the prepared materials were investigated. The characterization results reveal that spherical AgNPs were quickly synthesized and uniformly dispersed on rGO sheets using the proposed online system. Fourier transform infrared spectroscopy analysis confirmed that phenols, flavonoids, and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites. Using sodium borohydride (NaBH4) degradation of p-nitrophenol (4-NP) as a model, the catalytic activity of the prepared AgNP/rGO materials was evaluated. The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials, and the composite had a much better catalytic activity than the bare AgNPs and rGO had. Compared with the conventional chemical method, our online method is facile, fast, cost-efficient, and environmentally friendly.


Asunto(s)
Grafito , Nanopartículas del Metal , Luz , Microondas , Plata
5.
Environ Sci Pollut Res Int ; 27(17): 22120-22126, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32304044

RESUMEN

This study was performed to explore acute toxicity of biologically synthesized gold nanoparticles (AuNPs) to a model organism Daphnia magna. Hence, using aqueous extract of marine macroalga Saccharina japonica, two AuNPs including SJ-AuNPs-72 (72.6 ± 43.8 nm) and SJ-AuNPs-10 (10.8 ± 2.8 nm) were synthesized. These AuNPs were characterized by different techniques such as UV-Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). The 48-h LC50 values of SJ-AuNPs-72 and SJ-AuNPs-10 to D. magna were 1.57 ± 0.07 and 2.69 ± 0.12 mg/L, respectively, showing greater toxicity of SJ-AuNPs-72. After exposure of daphnids to treatments, AuNPs were accumulated in gut tract, and lipid droplets under the Daphnia carapace were also observed. Whereas studies on toxicity of biosynthesized AuNPs are still scarce, the achievements of this work are helpful for understanding the toxicity of biosynthesized AuNPs to crustacean D. magna.


Asunto(s)
Nanopartículas del Metal , Algas Marinas , Animales , Daphnia , Dispersión Dinámica de Luz , Oro , Extractos Vegetales , Espectroscopía Infrarroja por Transformada de Fourier
6.
IET Nanobiotechnol ; 11(8): 973-980, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29155397

RESUMEN

The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV-Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV-Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Plata/química , Ziziphus/química , Antibacterianos/química , Catálisis , Escherichia coli/efectos de los fármacos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Extractos Vegetales/química , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 527-31, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-27209762

RESUMEN

As an important treatment method, sulfur fumigation plays an essential role in the production and preservation of traditional Chinese herbal medicines. Although there is strict regulation on the use of sulfur dioxide, the abuse of sulfur dioxide still occurred from time to time. And the public faces a high risk of exposure. Because of the poor precision and tedious preparation procedures of traditional recommended titration, the accurate and convenient determination of sulfur dioxide in Chinese herbal medicines is still a critical analytical task for medicines safety and the public health. In this study, an accurate, high-throughput, and convenient method for the absolute determination of SO2 in Chinese herbal medicines based on triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) technique is developed. The study compared the quantitative ability for sulfur when the ICP-MS operated under traditional single quadrupole (QMS) mode and novel triple quadrupole (MS/MS) mode with three Reaction/Collision cell condition (no gas, helium, and oxygen). The result indicated that when the concentration of sulfate ranging from 0.5 to 100 mg · L⁻¹, isotopic ³4S can be selected as quantitative ion either the ICP-MS operated under the QMS mode or MS/MS mode. The use of helium in the Reaction/Collision cell decreased the single intensity of background ions. Better than QMS mode, the MS/MS mode can effectively reduced background interference. But there are no significant differences about the linear range and limit of detection. However, when the ICP-MS operated under MS/MS mode and oxygen was used as reaction gas in the Reaction/Collision cell, the ICP-MS/MS provided an interference-free performance, the linear range and limit of detection improved significantly. Either ³²S or ³4S exhibits an excellent linearity (r > 0.999) over the concentration range of 0.02-100 mg · L⁻¹, with a limit of detection of 5.48 and 9.76 µg · L⁻¹ for ³²S¹6O4²â» and ³4S¹6O4²â», respectively. The Chinese herbal medicines was treated using microwave digestion added 6 mL nitric acid and 2 mL hydrogen peroxide before analysis. The amount of nitric acid and hydrogen peroxide were optimized. The method was validated using Chinese herbal standard reference material GBW10020. The sample was treated and detected in six parallel, and the average concentrations obtained using the developed method (0.42% ± 0.01%) is in excellent agreement with the standard concentration (0.41%± 0.03%). The study demonstrates an accurate and convenient approach for the quantification of SO2 in Chinese herbal medicines.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Dióxido de Azufre/análisis , Espectrometría de Masas en Tándem , Microondas , Análisis Espectral
8.
J Chromatogr A ; 1398: 94-107, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25939738

RESUMEN

The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Aromáticos/análisis , Petróleo/análisis , Alcanos/análisis , Biodegradación Ambiental , China , Naftalenos/análisis , Fenantrenos/análisis
9.
Aquat Toxicol ; 126: 207-13, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23220413

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in the environment and in various biota, including fish, and has been implicated in disruption of the thyroid endocrine system. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of TDCPP (10, 50, 100, 300 and 600 µg/L) from 2 h post-fertilization (hpf) to 144 hpf. Developmental endpoints, and whole-body concentrations of thyroid hormones and transcriptional profiles of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis were examined. Exposure to TDCPP caused a dose-dependent developmental toxicity, including decreased body weight, reduced hatching, survival and heartbeat rates, and increased malformation (spinal curvature). Treatment with the positive control chemical 3,3',5-triiodo-l-thyronine (T3) significantly decreased whole-body thyroxin (T4) concentrations, increased whole-body T3 concentrations, and upregulated mRNA expression involved in the HPT axis as a compensatory mechanism. These results suggested that the HPT axis in 144-hpf zebrafish larvae was responsive to chemical exposure and could be used to evaluate the effects of chemicals on the thyroid endocrine system. TDCPP exposure significantly decreased whole-body T4 concentrations and increased whole-body T3 concentrations, indicating thyroid endocrine disruption. The upregulation of genes related to thyroid hormone metabolism (dio1 and ugt1ab) might be responsible for decreased T4 concentrations. Treatment with TDCPP also significantly increased transcription of genes involved in thyroid hormone synthesis (tshß, slc5a5 and tg) and thyroid development (hhex, nkx2.1 and pax8) as a compensatory mechanism for decreased T4 concentrations. Taken together, these results suggest that TDCPP alters the transcription of genes involved in the HPT axis and changes whole-body concentrations of thyroid hormones in zebrafish embryos/larvae, thus causing an endocrine disruption of the thyroid system.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Compuestos Organofosforados/toxicidad , Hipófisis/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Embrión no Mamífero/efectos de los fármacos
10.
J AOAC Int ; 86(3): 461-6, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12852559

RESUMEN

A method based on headspace solid-phase microextraction and cryogenic gas chromatography with flame ionization detection was developed for the determination of volatile residual solvents in traditional Chinese medicines. A laboratory-made cryogenic chromatographic system was used for the separation of 15 kinds of residual solvents. During the analysis, a 65 microm PDMS/DVB fiber was used to extract the residual solvents, the extraction time was controlled at 0 degrees C for 15 min, and the NaCl content of the sample was maintained at 30%. The limits of detection ranged from 0.08 (for octane) to 5000 microg/L (for ethanol), and the relative standard deviations were < 8%. The recoveries from spiked samples ranged from 88 to 112%. Trace levels of residual solvents in several traditional Chinese medicines were effectively identified and quantified.


Asunto(s)
Medicina Tradicional China , Solventes/análisis , Calibración , Cromatografía de Gases , Ionización de Llama
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA