Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958553

RESUMEN

The biosynthesis of C27-29 sterols from their C30 precursor squalene involves C24-alkylation and the removal of three methyl groups, including two at the C4 position. The two C4 demethylation reactions require a bifunctional enzyme known as 3ß-hydroxysteroid dehydrogenase/C4-decarboxylase (3ßHSD/D), which removes an oxidized methyl (carboxylic) group at C4 while simultaneously catalyzing the 3ß-hydroxyl→3-keto oxidation. Its loss-of-function mutations cause ergosterol-dependent growth in yeast and congenital hemidysplasia with ichthyosiform erythroderma and limb defect (CHILD) syndrome in humans. Although plant 3ßHSD/D enzymes were well studied enzymatically, their developmental functions remain unknown. Here we employed a CRISPR/Cas9-based genome-editing approach to generate knockout mutants for two Arabidopsis 3ßHSD/D genes, HSD1 and HSD2, and discovered the male gametophytic lethality for the hsd1 hsd2 double mutation. Pollen-specific expression of HSD2 in the heterozygous hsd1 hsd2/+ mutant not only rescued the pollen lethality but also revealed the critical roles of the two HSD genes in embryogenesis. Our study thus demonstrated the essential functions of the two Arabidopsis 3ßHSD/D genes in male gametogenesis and embryogenesis.


Asunto(s)
Arabidopsis , Carboxiliasas , Humanos , Arabidopsis/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/genética , Polen/genética , Polen/metabolismo , Carboxiliasas/genética , Desarrollo Embrionario
2.
Nat Plants ; 5(4): 401-413, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911122

RESUMEN

To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B-SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Nitratos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA