Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 310: 116349, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924861

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kunxian capsule (KXC) is a new traditional Chinese medicine drug included in "The key science and technology achievements" in the Ninth Five Year Plan of China. KXC has been clinically used for more than 10 years in the treatment of lupus nephritis (LN). However, the underlying role and molecular mechanism of KXC in LN remain unclear. AIM OF THE STUDY: This study aimed to explore the efficacy and potential mechanisms of KXC through pharmacological network, in vitro and in vivo studies. MATERIALS AND METHODS: Pharmacological network analysis of KXC treatment in LN was performed using data acquired from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP, https://old.tcmsp-e.com/tcmsp.php) and NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/database). HK-2 cells were chosen as an in vitro model of the tubular immune response by simulation with interferon γ (IFN-γ). MRL/lpr mice were used to explore the mechanism of KXC in vivo. Finally, the specific active molecules of KXC were further analyzed by molecular docking. RESULTS: The pharmacological network analysis showed that STAT1 is a key factor in the effects of KXC. In vitro and in vivo experiments confirmed the therapeutic effect of KXC on LN renal function and tubular inflammation. The protective effect of KXC is mediated by STAT1 blockade, which further reduces T-cell infiltration and improves the renal microenvironment in LN. Two main components of KXC, Tripterygium hypoglaucum (H.Lév.) Hutch (Shanhaitang) and Epimedium brevicornu Maxim (Yinyanghuo) could block JAK1-STAT1 activation. Furthermore, we found 8 molecules that could bind to the ATP pocket of JAK1 with high affinities by performing docking analysis. CONCLUSIONS: KXC inhibits renal damage and T-cell infiltration in LN by blocking the JAK1-STAT1 pathway.


Asunto(s)
Nefritis Lúpica , Animales , Ratones , Nefritis Lúpica/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Transducción de Señal , Ratones Endogámicos MRL lpr , Riñón/metabolismo , Factor de Transcripción STAT1/metabolismo
2.
Ecotoxicol Environ Saf ; 222: 112504, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265533

RESUMEN

This study aimed to investigate the intoxication mechanism of golden pompano (Trachinotus ovatus) exposed to high ammonia levels and the effects on the immune and antioxidant mechanisms of gills. Juvenile golden pompano was exposed to ammonia (total ammonia: 26.9 mg/L) to induce 96 h of ammonia stress, and a 96 h recovery experiment was performed after poisoning. Then, we evaluated hematological parameters, the histological structure and the expression of related genes. In this experiment, continuous exposure to high levels of ammonia led to a significant increase in plasma alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels (P < 0.05), and the levels of triiodothyronine (T3) and tetraiodothyronine (T4) were significantly reduced (P < 0.05). Moreover, the expression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and inflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) increased (P < 0.05). These results indicate that ammonia activates the active osmotic regulatory mechanism of fish gills and participates in defense and immune responses. However, with prolonged exposure to ammonia, the balance of the defense system is disrupted, leading to oxidative damage and inflammation of the gill tissue. This research not only helps elucidate the intoxication mechanism of golden pompano by ammonia at the molecular level but also provides a theoretical basis for further research on detoxification mechanisms.


Asunto(s)
Amoníaco , Branquias , Amoníaco/toxicidad , Alimentación Animal/análisis , Animales , Antioxidantes , Suplementos Dietéticos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Branquias/metabolismo , Estrés Oxidativo , Transducción de Señal
3.
Int J Pharm ; 503(1-2): 90-101, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-26947738

RESUMEN

A hepatic tumor bitargeted microemulsions drug delivery system using coix seed oil and coix seed polysaccharide (CP) acting as anticancer components, as well as functional excipients, was developed for enhanced tumor-specific accumulation by CP-mediated enhancement on passive tumor targeting and modification of galactose stearate (tumor-targeted ligand). In the physicochemical characteristics studies, galactose stearate-modified coix seed multicomponent microemulsions containing 30% CP (w%) (Gal-C-MEs) had a well-defined spherical shape with a small size (47.63 ± 1.41 nm), a narrow polydispersity index (PDI, 0.101 ± 0.002), and a nearly neutral surface charge (-4.37 ± 1.76 mV). The half-maximal inhibitory concentration (IC50) of Gal-C-MEs against HepG2 cells was 70.2 µg/mL, which decreased by 1.8-fold in comparison with that of coix seed multicomponent microemulsions (C-MEs). The fluorescence intensity of fluorescein isothiocyanate (FITC)-loaded Gal-C-MEs (FITC-Gal-C-MEs) internalized by HepG2 cells was 1.8-fold higher than that of FITC-loaded C-MEs (FIT C-C-MEs), but the cellular uptake of the latter became reduce by 1.6-fold when the weight ratio of CP decreased up to 10%. In the cell apoptosis studies, C-MEs (containing 30% CP) did not show a significant difference with Gal-C-MEs, but exhibited 3.3-fold and 1.5-fold increase relative to C-MEs containing 10% CP and 20% CP, respectively. In the in vivo tumor targeting studies, Cy5-loaded Gal-C-MEs (Cy5-Gal-C-MEs), notably distributed in the tumor sites and still found even at 48 h post-administration, displayed the strongest capability of tumor tissue accumulation and retention among all the test groups. Most importantly, Gal-C-MEs had stronger inhibition of tumor growth, prolonged survival time and more effectively tumor cell apoptosis induction in comparison with C-MEs containing different amounts of CP, which further confirmed that a certain amount of CP and tumor-targeted ligand were of great importance to potent anticancer efficacy. The aforementioned results suggested that Gal-C-MEs presented promising potential as a highly effective and safe anticancer drug delivery system for enhanced liver cancer delivery.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Coix , Aceites de Plantas/administración & dosificación , Polisacáridos/administración & dosificación , Semillas , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Emulsiones , Galactosa/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones Endogámicos ICR , Ratones Desnudos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Carga Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA