Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 427: 136673, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37364316

RESUMEN

Traceability and authentication of protected designation of origin (PDO) tea is an important prerequisite to safeguard its production and distribution system. Here, indicator displacement array (IDA) sensors consisting of natural anthocyanidins and edible metal ions were developed to authenticate PDO and non-PDO Longjing from different origins. Five IDA elements were selected for constructing sensors, achieved by an indicator displacement reaction after adding epigallocatechin gallate solution. The obtained sensors were subsequently used for real tea samples. Unsupervised algorithms were used for data exploration among PDO and non-PDO teas. The supervised support vector machine (SVM) model further achieved accurate authentication of PDO and non-PDO Longjing with a correct classification rate of 100% for the 26 validated samples. The developed IDA sensor thus achieves accurate authentication of PDO tea in a hazard-free and cost-efficient way, providing a useful tool for origin authentication of other agricultural products.


Asunto(s)
Colorimetría , , Análisis Costo-Beneficio , Antocianinas
2.
Food Res Int ; 169: 112845, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254419

RESUMEN

Aroma types of green teas associate with their commercial prices and consumer acceptance, mainly including floral-like (HX), chestnut-like (LX), and fresh (QX) aromas. However, the volatile differences and specificities in these aroma types are still unclear. Herein, Taiping Houkui green teas with HX, LX, and QX aromas were processed separately with the same fresh tea leaves. Ninety-four and seventy-eight volatiles were detected and identified by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), respectively. Candidate differential volatiles among the tea samples were determined by the variable importance in projection (VIP) of the partial least squares-discriminant analysis (PLS-DA) and were further confirmed by the relative odor activity value (ROAV) and odor description. The volatiles 1-hexanol, linalool oxide (furanoid), linalool, geraniol, (E)-ß-ionone, isoamyl acetate, and 2-methylpropanal enriched in HX and contributed to the floral-like aroma, while 3-methylbutanal, 2-ethyl-1-hexanol, indole, ß-damascone, and cedrol enriched in LX and contributed to the chestnut-like aroma. This study reveals the specificities and contributions of volatiles in green teas with different aromas, thus providing new insights into the molecular basis of different flavored teas, benefiting for their precision processing and targeted quality control.


Asunto(s)
, Compuestos Orgánicos Volátiles , Té/química , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA