Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37226859

RESUMEN

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Asunto(s)
Ácido Clorogénico , Lonicera , Ácido Clorogénico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Ácido Quínico/metabolismo , Fitomejoramiento , Mapeo Cromosómico
2.
Food Chem ; 347: 128997, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33450551

RESUMEN

In this study, five fats (hydrogenated palm kernel oil, HPKO-A and HPKO-B; refined vegetable oils, RVO-A and RVO-B; transesterification oil, TO) were used to prepare whipping creams. HPKO-A and RVO-A which rich in lauric and myristic acids facilitated the formation of small crystals and dense crystal network, while higher stearic acid content of HPKO-B formed large spherical crystals. The richness in palmitic acid (RVO-B and TO) and oleic acid (TO) led to the formation of weak crystal network. Higher partial coalescence was correlated to higher collision frequency of fat globules and crystal connection, therefore, the overruns, firmness and stability of creams prepared by HPKO-A and RVO-A were higher than those of HPKO-B and RVO-B. The least stability of cream prepared by TO was related to the weak crystal networks. In summary, higher lauric and myristic acids content resulted in dense crystal networks, promoting partial coalescence and improving the cream quality.


Asunto(s)
Ácidos Grasos/química , Análisis de los Alimentos/métodos , Aceites de Plantas/química , Cristalización , Emulsiones/química , Aceite de Palma/química , Temperatura de Transición
3.
PLoS One ; 7(11): e48970, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133665

RESUMEN

Chrysanthemum L. (Asteraceae-Anthemideae) is a genus with rapid speciation. It comprises about 40 species, most of which are distributed in East Asia. Many of these are narrowly distributed and habitat-specific. Considerable variations in morphology and ploidy are found in this genus. Some species have been the subjects of many studies, but the relationships between Chrysanthemum and its allies and the phylogeny of this genus remain poorly understood. In the present study, 32 species/varieties from Chrysanthemum and 11 from the allied genera were analyzed using DNA sequences of the single-copy nuclear CDS gene and seven cpDNA loci (psbA-trnH, trnC-ycf6, ycf6-psbM, trnY-rpoB, rpS4-trnT, trnL-F, and rpL16). The cpDNA and nuclear CDS gene trees both suggest that 1) Chrysanthemum is not a monophyletic taxon, and the affinity between Chrysanthemum and Ajania is so close that these two genera should be incorporated taxonomically; 2) Phaeostigma is more closely related to the Chrysanthemum+Ajania than other generic allies. According to pollen morphology and to the present cpDNA and CDS data, Ajania purpurea is a member of Phaeostigma. Species differentiation in Chrysanthemum appears to be correlated with geographic and environmental conditions. The Chinese Chrysanthemum species can be divided into two groups, the C. zawadskii group and the C. indicum group. The former is distributed in northern China and the latter in southern China. Many polyploid species, such as C. argyrophyllum, may have originated from allopolyploidization involving divergent progenitors. Considering all the evidence from present and previous studies, we conclude that geographic and ecological factors as well as hybridization and polyploidy play important roles in the divergence and speciation of the genus Chrysanthemum.


Asunto(s)
Chrysanthemum/genética , ADN de Cloroplastos/genética , Teorema de Bayes , Cloroplastos , Cartilla de ADN/genética , ADN de Plantas/genética , Ecosistema , Evolución Molecular , Genes de Plantas , Modelos Estadísticos , Hibridación de Ácido Nucleico , Filogenia , Ploidias , Polen/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA