Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theriogenology ; 208: 88-101, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37307736

RESUMEN

Appropriate additives can provide a suitable physiological environment for storage of fish sperm and facilitate the large-scale breeding of endangered species and commercial fish. Suitable additives for fish sperm storage in vitro are required for artificial insemination. This study evaluate the effects of 0.1, 0.5, 1.5, and 4.5 mg/L selenium nanoparticles (SeNPs) on the quality of Schizothorax prenanti and Onychostoma macrolepis sperm storage in vitro at 4 °C for 72 h. We found that 0.5 mg/L SeNPs was a suitable concentration for maintaining the normal physiological state of O. macrolepis sperm during storage at 4 °C (p < 0.05). Higher adenosine triphosphate (ATP) content of O. macrolepis sperm before and after activation was present at that concentration. To further explore the potential mechanism of action of SeNPs on O. macrolepis sperm, western blotting and glucose uptake analyses were performed. The results implied that after 24 h of in vitro preservation, 0.5 mg/L SeNPs significantly improved p-AMPK levels and glucose uptake capacity of O. macrolepis sperm, while compound C (CC), the inhibitor of activated AMP-activated protein kinase (p-AMPK), significantly restricted the function of SeNPs on stored sperm. Similar effects of 0.5 mg/L SeNPs were found on Schizothorax prenanti sperm. Our study demonstrates that SeNPs maintained ATP content and O. macrolepis and Schizothorax prenanti sperm function during storage in vitro for 72 h, possibly because SeNPs enhanced the glucose uptake capacity of sperm by maintaining the level of p-AMPK.


Asunto(s)
Nanopartículas , Selenio , Masculino , Animales , Selenio/farmacología , Proteínas Quinasas Activadas por AMP , Semen , Peces , Adenosina Trifosfato , Glucosa
2.
Nat Commun ; 11(1): 1449, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193375

RESUMEN

Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.


Asunto(s)
Ciencia de los Materiales , Microgeles/química , Polen/química , Biomimética/métodos , Química Computacional , Epítopos/química , Epítopos/inmunología , Esterificación , Dureza , Hidrólisis , Hidróxidos/química , Microscopía Fluorescente , Pectinas/química , Pectinas/inmunología , Polen/inmunología , Polinización/fisiología , Compuestos de Potasio/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA