Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chin Med ; 19(1): 36, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429802

RESUMEN

BACKGROUND: Liver cirrhosis is a chronic liver disease with hepatocyte necrosis and lesion. As one of the TCM formulas Wuling Powder (WLP) is widely used in the treatment of liver cirrhosis. However, it's key functional components and action mechanism still remain unclear. We attempted to explore the Key Group of Effective Components (KGEC) of WLP in the treatment of Liver cirrhosis through integrative pharmacology combined with experiments. METHODS: The components and potential target genes of WLP were extracted from published databases. A novel node importance calculation model considering both node control force and node bridging force is designed to construct the Function Response Space (FRS) and obtain key effector proteins. The genetic knapsack algorithm was employed to select KGEC. The effectiveness and reliability of KGEC were evaluated at the functional level by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the effectiveness and potential mechanism of KGEC were confirmed by CCK-8, qPCR and Western blot. RESULTS: 940 effective proteins were obtained in FRS. KEGG pathways and GO terms enrichments analysis suggested that effective proteins well reflect liver cirrhosis characteristics at the functional level. 29 components of WLP were defined as KGEC, which covered 100% of the targets of the effective proteins. Additionally, the pathways enriched for the KGEC targets accounted for 83.33% of the shared genes between the targets and the pathogenic genes enrichment pathways. Three components scopoletin, caryophyllene oxide, and hydroxyzinamic acid from KGEC were selected for in vivo verification. The qPCR results demonstrated that all three components significantly reduced the mRNA levels of COL1A1 in TGF-ß1-induced liver cirrhosis model. Furthermore, the Western blot assay indicated that these components acted synergistically to target the NF-κB, AMPK/p38, cAMP, and PI3K/AKT pathways, thus inhibiting the progression of liver cirrhosis. CONCLUSION: In summary, we have developed a new model that reveals the key components and potential mechanisms of WLP for the treatment of liver cirrhosis. This model provides a reference for the secondary development of WLP and offers a methodological strategy for studying TCM formulas.

2.
BMC Complement Med Ther ; 24(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166916

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the destruction of synovial tissue and articular cartilage. Huangqi-Guizhi-Wuwu-Decoction (HGWD), a formula of Traditional Chinese Medicine (TCM), has shown promising clinical efficacy in the treatment of RA. However, the synergistic effects of key response components group (KRCG) in the treatment of RA have not been well studied. METHODS: The components and potential targets of HGWD were extracted from published databases. A novel node influence calculation model that considers both the node control force and node bridging force was designed to construct the core response space (CRS) and obtain key effector proteins. An increasing coverage coefficient (ICC) model was employed to select the KRCG. The effectiveness and potential mechanism of action of KRCG were confirmed using CCK-8, qPCR, and western blotting. RESULTS: A total of 796 key effector proteins were identified in CRS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses confirmed their effectiveness and reliability. In addition, 59 components were defined as KRCG, which contributed to 85.05% of the target coverage of effective proteins. Of these, 677 targets were considered key reaction proteins, and their enriched KEGG pathways accounted for 84.89% of the pathogenic genes and 87.94% of the target genes. Finally, four components (moupinamide, 6-Paradol, hydrocinnamic acid, and protocatechuic acid) were shown to inhibit the inflammatory response in RA by synergistically targeting the cAMP, PI3K-Akt, and HIF-1α pathways. CONCLUSIONS: We have introduced a novel model that aims to optimize and analyze the mechanisms behind herbal formulas. The model revealed the KRCG of HGWD for the treatment of RA and proposed that KRCG inhibits the inflammatory response by synergistically targeting cAMP, PI3K-Akt, and HIF-1α pathways. Overall, the novel model is plausible and reliable, offering a valuable reference for the secondary development of herbal formulas.


Asunto(s)
Artritis Reumatoide , Fármacos Neuroprotectores , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Reproducibilidad de los Resultados , Artritis Reumatoide/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico
3.
J Biomol Struct Dyn ; : 1-19, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921741

RESUMEN

Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.

5.
Front Pharmacol ; 13: 1018273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339610

RESUMEN

Traditional Chinese medicine (TCM) usually acts in the form of compound prescriptions in the treatment of complex diseases. The herbs contained in each prescription have the dual nature of efficiency and toxicity due to their complex chemical component, and the principle of prescription is usually to increase efficiency and reduce toxicity. At present, the studies on prescriptions have mainly focused on the consideration of the material basis and possible mechanism of the action mode, but the quantitative research on the compatibility rule of increasing efficiency and reducing toxicity is still the tip of the iceberg. With the extensive application of computational pharmacology technology in the research of TCM prescriptions, it is possible to quantify the mechanism of synergism and toxicity reduction of the TCM formula. Currently, there are some classic drug pairs commonly used to treat complex diseases, such as Tripterygium wilfordii Hook. f. with Lysimachia christinae Hance for lung cancer, Aconitum carmichaelii Debeaux with Glycyrrhiza uralensis Fisch. in the treatment of coronary heart disease, but there is a lack of systematic quantitative analysis model and strategy to quantitatively study the compatibility rule and potential mechanism of synergism and toxicity reduction. To address this issue, we designed an integrated model which integrates matrix decomposition and shortest path propagation, taking into account both the crosstalk of the effective network and the propagation characteristics. With the integrated model strategy, we can quantitatively detect the possible mechanisms of synergism and attenuation of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance in the treatment of lung cancer. The results showed the compatibility of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance could increase the efficacy and decrease the toxicity of lung cancer treatment through MAPK pathway and PD-1 checkpoint pathway in lung cancer.

6.
Front Pharmacol ; 13: 801350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281924

RESUMEN

As a systemic inflammatory arthritis disease, rheumatoid arthritis (RA) is complex and hereditary. Traditional Chinese medicine (TCM) has evident advantages in treating complex diseases, and a variety of TCM formulas have been reported that have effective treatment on RA. Clinical and pharmacological studies showed that Ermiao Powder, which consists of Phellodendron amurense Rupr. (PAR) and Atractylodes lancea (Thunb.) DC. (ALD), can be used in the treatment of RA. Currently, most studies focus on the anti-inflammatory mechanism of PAR and ALD and are less focused on their coordinated molecular mechanism. In this research, we established an integrative pharmacological strategy to explore the coordinated molecular mechanism of the two herbs of Ermiao Powder in treating RA. To explore the potential coordinated mechanism of PAR and ALD, we firstly developed a novel mathematical model to calculate the contribution score of 126 active components and 85 active components, which contributed 90% of the total contribution scores that were retained to construct the coordinated functional space. Then, the knapsack algorithm was applied to identify the core coordinated functional components from the 85 active components. Finally, we obtained the potential coordinated functional components group (CFCG) with 37 components, including wogonin, paeonol, ethyl caffeate, and magnoflorine. Also, functional enrichment analysis was performed on the targets of CFCG to explore the potential coordinated molecular mechanisms of PAR and ALD. The results indicated that the CFCG could treat RA by coordinated targeting to the genes involved in immunity and inflammation-related signal pathways, such as phosphatidylinositol 3­kinase/protein kinase B signaling pathway, mitogen-activated protein kinase signaling pathway, tumor necrosis factor signaling pathway, and nuclear factor-kappa B signaling pathway. The docking and in vitro experiments were used to predict the affinity and validate the effect of CFCG and further confirm the reliability of our method. Our integrative pharmacological strategy, including CFCG identification and verification, can provide the methodological references for exploring the coordinated mechanism of TCM in treating complex diseases and contribute to improving our understanding of the coordinated mechanism.

7.
Front Cell Dev Biol ; 10: 831894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211473

RESUMEN

Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone mineral density and bone mass, the destruction of bone tissue microstructure, and increased bone fragility. At present, the treatments of OP mainly include bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these treatments have observable side effects and cannot fundamentally improve bone metabolism. Currently, the prescription of herbal medicine and their derived proprietary Chinese medicines are playing increasingly important roles in the treatment of OP due to their significant curative effects and few side effects. Among these prescriptions, Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction (EXD) are widely employed at the clinic on therapy of OP, which also is in line with the compatibility principle of "different treatments for the same disease" in herbal medicine. However, at present, the functional interpretation of "different treatments for the same disease" in herbal medicine still lacks systematic quantitative research, especially on the detection of key component groups and mechanisms. To solve this problem, we designed a new bioinformatics model based on random walk, optimized programming, and information gain to analyze the components and targets to figure out the Functional Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of high relevance score, the number of reported evidence, and coverage of enriched pathways were performed to verify the precision and reliability of FRMs. At the same time, the information gain and target influence of each component was calculated, and the key component groups in all FRMs of each prescription were screened to speculate the potential action mode of different prescriptions on the same disease. Results show that the relevance score and the number of reported evidence of high reliable genes in FRMs were higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in the component-target (C-T) network. Functional pathway enrichment analysis showed that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380), calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-Akt signaling pathway (hsa04151). Combined with experiments, the key component groups and the mechanism of "different treatments for the same disease" in the three prescriptions and proprietary Chinese medicines were verified. This study provides methodological references for the optimization and mechanism speculation of Chinese medicine prescriptions and proprietary Chinese medicines.

8.
Andrology ; 9(1): 342-351, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507631

RESUMEN

BACKGROUND: Type 5 phosphodiesterase inhibitor (PDE5I) has become the first-line treatment for erectile dysfunction (ED). However, its effective rate for hypertension ED is only 60%-70%. How to improve the efficacy of ED treatment is the focus of current research. OBJECTIVE: To explore whether icariin can improve the erectile function of spontaneously hypertensive rats (SHR) by affecting post-translational protein-protein interactions to regulate endothelial nitric oxide synthetase (eNOS) activity. METHOD: Twelve-week-old healthy male SHR rats and Wistar-Kyoto rats (WKY) were randomly divided into four groups: SHR control group, SHR + icariin (10 mg/kg·d gavage) treatment group, WKY control group, and WKY + icariin (10 mg/kg·d gavage) treatment group (n = 5). After 4 weeks, the maximum penile intracavernous pressure/mean arterial pressure (ICPmax/MAP), the expression of heat-shock protein 90 (Hsp90), caveolin-1, calmodulin, p-eNOS, and eNOS in penile cavernous tissue and the content of nitric oxide (NO) and cGMP were measured. The interaction between eNOS and Hsp90, caveolin-1, and calmodulin were detected by immunoprecipitation. RESULT: The ICPmax/MAP in the SHR + icariin treatment group (0.08 ± 0.01, 0.23 ± 0.07, 0.40 ± 0.05) was significantly higher than the SHR group (0.03 ± 0.01, 0.13 ± 0.03, 0.21 ± 0.02) under 3V and 5V electrical stimulations (P < .05). Compared with the SHR group, the expression of HSP90, calmodulin, P-eNOS, eNOS, and P-eNOS/eNOS in the penile cavernous tissue of rats in the WKY group and the SHR + icariin treatment group were significantly increased (P < .05), and the expression of caveolin-1 was significantly decreased (P < .05). The NO content (2.16 ± 0.22 µmol/g) and cGMP concentration (3.69 ± 0.12 pmol/mg) in the SHR + icariin treatment group were significantly higher than those in the SHR group (1.01 ± 0.14 µmol/g, 2.31 ± 0.22 pmol/mg) (P < .05). Compared with the SHR group, the interaction between eNOS and HSP90 in the cavernosa of the rats in the SHR + icariin treatment group was significantly increased (P < .05), the interaction between eNOS and caveolin-1 was significantly decreased (P < .01), and the interaction between eNOS and calmodulin did not significantly change. DISCUSSION AND CONCLUSION: Up-regulating the expression of HSP90 and calmodulin and inhibiting caveolin-1 in SHR corpus cavernosum, promoting the interaction between eNOS and HSP90, inhibiting the interaction between eNOS and caveolin-1, increasing p-eNOS/eNOS, may be the mechanism of icariin that improves SHR erectile function.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Disfunción Eréctil/tratamiento farmacológico , Flavonoides/uso terapéutico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pene/efectos de los fármacos , Animales , Calmodulina/metabolismo , Caveolina 1/metabolismo , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/farmacología , Epimedium , Disfunción Eréctil/enzimología , Flavonoides/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Masculino , Pene/enzimología , Fitoterapia , Distribución Aleatoria , Ratas Endogámicas SHR , Ratas Endogámicas WKY
9.
Cell Death Dis ; 11(7): 524, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32655130

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor survival. It is urgent to search for new efficient drugs with good stability and safety for clinical therapy. This study aims to identify potential anticancer drugs from a compound library consisting of 429 natural products. Echinatin, a compound isolated from the Chinese herb Glycyrrhiza uralensis Fisch, was found to markedly induce apoptosis and inhibit proliferation and colony-formation ability in ESCC. Confocal fluorescence microscopy data showed that echinatin significantly induced autophagy in ESCC cells, and autophagy inhibitor bafilomycinA1 attenuated the suppressive effects of echinatin on cell viability and apoptosis. Mechanistically, RNA sequencing coupled with bioinformatics analysis and a series of functional assays revealed that echinatin induced apoptosis and autophagy through inactivation of AKT/mTOR signaling pathway, whereas constitutive activation of AKT significantly abrogated these effects. Furthermore, we demonstrated that echinatin had a significant antitumor effect in the tumor xenograft model and markedly suppressed cell migration and invasion abilities of ESCC cells in a dose-dependent manner. Our findings provide the first evidence that echinatin could be a novel therapeutic strategy for treating ESCC.


Asunto(s)
Productos Biológicos/uso terapéutico , Chalconas/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis , Autofagia , Productos Biológicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Chalconas/farmacología , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica , Transducción de Señal , Transfección
10.
Ultrasound Med Biol ; 41(4): 929-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25701518

RESUMEN

Inferior vena cava filters (IVCFs) have been used clinically for approximately 45 y, but only a few studies of these devices have involved intensive care unit (ICU) patients who were critically ill and had multiple-organ dysfunction or were otherwise too unstable for transport. The purpose of this research was to assess the tolerability and efficacy of bedside ultrasound-guided IVCF placement in ICU patients. A retrospective analysis of both bedside ultrasound-guided and X-ray-guided ICVF placement was performed from November of 2011 to August of 2013. The total success rate for ultrasound-guided IVCF placement was 93.4%, which included a 96.0% success rate in 25 ICU patients with an average age of 69.46 y. Six-month follow-up studies revealed no significant differences in long-term complications between the ultrasound- and X-ray-guided groups. IVCFs may be safely implanted under ultrasound guidance in a monitored ICU environment. Our conclusion is that patients should be fasting and should receive an enema and that pre-operative surface marking and dynamic monitoring should be employed. Further research is needed to develop specific ultrasound guidelines.


Asunto(s)
Cuidados Críticos/métodos , Ultrasonografía Intervencional/métodos , Filtros de Vena Cava , Vena Cava Inferior/diagnóstico por imagen , Trombosis de la Vena/terapia , Anciano , Enfermedad Crítica , Femenino , Estudios de Seguimiento , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
11.
Plant Cell ; 19(6): 1930-46, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17586658

RESUMEN

Villin/gelsolin/fragmin superfamily proteins have been shown to function in tip-growing plant cells. However, genes encoding gelsolin/fragmin do not exist in the Arabidopsis thaliana and rice (Oryza sativa) databases, and it is possible that these proteins are encoded by villin mRNA splicing variants. We cloned a 1006-bp full-length cDNA from Lilium longiflorum that encodes a 263-amino acid predicted protein sharing 100% identity with the N terminus of 135-ABP (Lilium villin) except for six C-terminal amino acids. The deduced 29-kD protein, Lilium ACTIN BINDING PROTEIN29 (ABP29), contains only the G1 and G2 domains and is the smallest identified member of the villin/gelsolin/fragmin superfamily. The purified recombinant ABP29 accelerates actin nucleation, blocks barbed ends, and severs actin filaments in a Ca(2+)- and/or phosphatidylinositol 4,5-bisphosphate-regulated manner in vitro. Microinjection of the protein into stamen hair cells disrupted transvacuolar strands whose backbone is mainly actin filament bundles. Transient expression of ABP29 by microprojectile bombardment of lily pollen resulted in actin filament fragmentation and inhibited pollen germination and tube growth. Our results suggest that ABP29 is a splicing variant of Lilium villin and a member of the villin/gelsolin/fragmin superfamily, which plays important roles in rearrangement of the actin cytoskeleton during pollen germination and tube growth.


Asunto(s)
Actinas/metabolismo , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Calcio/farmacología , Extractos Celulares , Citoesqueleto/efectos de los fármacos , ADN Complementario/aislamiento & purificación , Gelsolina , Germinación/efectos de los fármacos , Lilium/citología , Lilium/efectos de los fármacos , Proteínas de Microfilamentos , Datos de Secuencia Molecular , Fosfatidilinositol 4,5-Difosfato/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Polen/citología , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA