Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 301: 115754, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36195301

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zingiberis Rhizoma (ZR) and Zingiberis Rhizoma Carbonisata (ZRC), as two forms of ginger-based herbal drugs used in China for at least 2000 years, have been recorded in Chinese Pharmacopoeia and applied for specific indications in traditional Chinese medicine (TCM). AIM OF THE STUDY: The present study aimed to explore the underlying therapeutic and processing mechanism of the absorbed components of ZR and ZRC on deficiency-cold and hemorrhagic syndrome (DCHS) using network pharmacological technique combined with pharmacokinetics strategy. MATERIALS AND METHODS: In this study, a rapid and sensitive approach was conceived to simultaneously determine the seven components (zingiberone, 6-gingerol, 8-gingerol, 6-shogaol, 6-paradol, diacetyl-6-gingerol and 10-gingerol) in rat serum by HPLC-DAD-MS. The network pharmacological technique was employed to evaluate the effect of the absorbed components of ZR and ZRC on DCHS. Also, the vitro experiments were carried out to validate the functions of the seven compounds on coagulation and other major haematological effects. RESULTS: The values of intra-assay and inter-assay precision were determined to be less than 7.44%, with an accuracy value ranging from 83.64% to 107.99%. Analysis of rat plasma revealed that the extraction recoveries and matrix effects of the seven analytes were >85.76%. The method for validation following oral administration of ZR and ZRC to rats was proved to be a success in the pharmacokinetic study of the seven ingredients. Pharmacokinetics showed that ZR processing could enhance the absorption and utilization of 6-shogaol, 6-paradol and diacetyl-6-gingerol, meanwhile reduce the absorption of 6-gingerol, 8-gingerol, and 10-gingerol. Through the pathway enrichment analysis, it was found that the significant biological process of ZR and ZRC on DCHS was primarily associated with complement, coagulation cascades and platelet activation pathways. The vitro experiments indicated that zingiberone, 6-paradol and diacetyl-6-gingerol had a hemostatic effect by upregulating the expression of one or more targets such as TNF-α, FⅩa, FⅫ, FⅧ, ICAM-1, vWF and ITGB3. While 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol played a critical role in promoting blood circulation by increasing the expression of TM and/or PORC, and/or reducing the expression of ITGB3. CONCLUSION: In brief, network pharmacological technique in combination with pharmacokinetics strategy provided an applicable method for pharmacological mechanism study of ZR and ZRC, which, also, could be used as reference for quality control of the two drugs. In a broader sense, this combined strategy might even be valuable in uncovering the therapeutic and processing mechanism of Chinese herbs on a systematic level.


Asunto(s)
Diacetil , Medicamentos Herbarios Chinos , Ratas , Animales , Farmacología en Red , Medicamentos Herbarios Chinos/farmacocinética
2.
J Environ Sci (China) ; 78: 193-203, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665638

RESUMEN

Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron. Geobacter sulfurreducens is a representative dissimilatory iron-reducing bacterium that assembles electrically conductive pili and cytochromes. The impact of supplementation with γ-Fe2O3 nanoparticles (NPs) (0.2 and 0.6 g) on the G. sulfurreducens-mediated reduction of ferrihydrite was investigated. In the overall performance of microbial ferrihydrite reduction mediated by γ-Fe2O3 NPs, stronger reduction was observed in the presence of direct contact with γ-Fe2O3 NPs than with indirect contact. Compared to the production of Fe(II) derived from biotic modification with ferrihydrite alone, increases greater than 1.6- and 1.4-fold in the production of Fe(II) were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 g γ-Fe2O3 NPs, respectively, occurred. X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G. sulfurreducens cells were in direct contact with γ-Fe2O3 NPs. Because of the sorption of biogenic Fe(II) onto γ-Fe2O3 NPs instead of ferrihydrite, the addition of γ-Fe2O3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation. Additionally, electron microscopy analysis confirmed that the direct addition of γ-Fe2O3 NPs stimulated the electrically conductive pili and cytochromes to stretch, facilitating long-range electron transfer between the cells and ferrihydrite. The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.


Asunto(s)
Biodegradación Ambiental , Compuestos Férricos/metabolismo , Geobacter/fisiología , Nanopartículas/metabolismo , Compuestos Férricos/química , Óxido Ferrosoférrico , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA