Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 147: 741-749, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31982525

RESUMEN

Honeycomb-like granules, with 2-4 µm pores on the surface, were prepared by heating potato starch suspensions in water at the pasting temperature. These granules with a yield of 84% were most amorphous (relative crystallinity 1.9%). Their total pore area was 0.668 m2/g, porosity was 73.4%, and mean particle size (D50) was 154.3 µm. The molecular weights (MW) of honeycomb-like granules were: amylopectin, 8.7 × 107 g/mol; amylose, 3.1 × 105 g/mol, close to those of native starch. The chain length distribution profiles of honeycomb-like granules were similar to those of native starch, while the proportions of B2 and B3 chains were higher. The water and oil adsorption of honeycomb-like granules were about 1.5 and 2.4 times those of native starch, respectively; and the cold water solubility of honeycomb-like granules was 88.5%, while native starch showed no solubility in cold water. Thus honeycomb-like starch granules have the potential to be applied as adsorbents, thickeners and adhesives for their dispersibility, adsorption capacity and cold water solubility.


Asunto(s)
Adsorción/efectos de los fármacos , Almidón/química , Agua/química , Solanum tuberosum/química , Solubilidad/efectos de los fármacos , Almidón/farmacología
2.
Carbohydr Polym ; 102: 1001-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24507375

RESUMEN

To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule.


Asunto(s)
Gelatina/química , Solanum tuberosum/química , Almidón/química , Acetilación , Microscopía Electrónica de Rastreo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA