Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 39(6): 2527-2549, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37889357

RESUMEN

Cardiovascular disease (CVD) caused by anti-cancer drug-induced cardiotoxicity is now the second leading cause of mortality among cancer survivors. It is necessary to establish efficient in vitro models for early predicting the potential cardiotoxicity of anti-cancer drugs, as well as for screening drugs that would alleviate cardiotoxicity during and post treatment. Human induced pluripotent stem cells (hiPSCs) have opened up new avenues in cardio-oncology. With the breakthrough of tissue engineering technology, a variety of hiPSC-derived cardiac microtissues or organoids have been recently reported, which have shown enormous potential in studying cardiotoxicity. Moreover, using hiPSC-derived heart-on-chip for studying cardiotoxicity has provided novel insights into the underlying mechanisms. Herein, we summarize different types of anti-cancer drug-induced cardiotoxicities and present an extensive overview on the applications of hiPSC-derived cardiac microtissues, cardiac organoids, and heart-on-chips in cardiotoxicity. Finally, we highlight clinical and translational challenges around hiPSC-derived cardiac microtissues/organoids/heart-on chips and their applications in anti-cancer drug-induced cardiotoxicity. • Anti-cancer drug-induced cardiotoxicities represent pressing challenges for cancer treatments, and cardiovascular disease is the second leading cause of mortality among cancer survivors. • Newly reported in vitro models such as hiPSC-derived cardiac microtissues/organoids/chips show enormous potential for studying cardio-oncology. • Emerging evidence supports that hiPSC-derived cardiac organoids and heart-on-chip are promising in vitro platforms for predicting and minimizing anti-cancer drug-induced cardiotoxicity.


Asunto(s)
Antineoplásicos , Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Neoplasias , Humanos , Cardiotoxicidad/etiología , Miocitos Cardíacos , Evaluación Preclínica de Medicamentos , Antineoplásicos/efectos adversos , Neoplasias/tratamiento farmacológico , Organoides
2.
Front Pharmacol ; 11: 768, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523536

RESUMEN

Piezo1, a mechanosensitive Ca2+-permeable non-selective cationic ion channel protein, is involved in a wide range of biological processes and plays crucial roles in vascular development. However, the pharmacology of this protein is in its infancy. Yoda1, the first specific chemical activator of Piezo1 channels, can activate Piezo1 in absence of mechanical stimulation. Hence, we sought to identify inhibitors of Yoda1 from Traditional Chinese Medicine (TCM). Intracellular Ca2+ measurements were conducted in human umbilical vein endothelial cells (HUVECs), HEK 293T cells overexpressing TRPC5 and TRPM2 channels, as well as in CHO K1 cells overexpressing TRPV4 channels. We identified tubeimoside I (TBMS1) as a strong inhibitor of the Yoda1 response and demonstrated its selectivity for the Piezo1 channels. Similarly, Yoda1-induced inhibitory results were obtained in Piezo1 wild-type overexpressed cells, murine liver endothelial cells (MLECs), and macrophages. The physiological responses of TBMS1 were identified by isometric tension, which can inhibit Yoda1 relaxation of aortic rings. Our results demonstrated that TBMS1 can effectively antagonize Yoda1 induced Piezo1 channel activation. This study sheds light on the existence of Yoda1 inhibitors and improves the understanding of vascular pharmacology through Piezo1 channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA