Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144982

RESUMEN

Hepatocellular carcinoma (HCC) accounts for the predominant form of liver malignancy and presents a leading cause of cancer-related death globally. Sorafenib (SOR), a first-line targeted drug for advanced HCC treatment, has a battery of untoward side effects. Photothermal therapy (PTT) has been utilized as an effective adjuvant in synergy with other approaches. However, little is known about the tumoricidal efficacy of combining SOR with PTT for HCC. Herein, a novel versatile nanoparticle, Cu2-xSe@SOR@PEG (CSP), that is based on a photothermal Cu2-xSe core and SOR for simultaneously reinforcing PTT and reducing the adverse effects of SOR was constructed. The synthesized CSP exhibited a remarkably enhanced therapeutic effect upon 808 nm laser irradiation via dampening HCC cell propagation and metastasis and propelling cell apoptosis. The intravenous administration of CSP substantially suppressed tumor growth in a xenograft tumor mouse model. It was noted that the CSP manifested low toxicity and excellent biocompatibility. Together, this work indicates a promising and versatile tool that is based on synergistic PTT and molecular-targeted therapy for HCC management.

2.
ACS Appl Mater Interfaces ; 14(33): 37356-37368, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35951459

RESUMEN

Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanocompuestos , Fotoquimioterapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Iridio/farmacología , Neoplasias Hepáticas/patología , Nanocompuestos/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Sorafenib/uso terapéutico
3.
Front Bioeng Biotechnol ; 9: 756758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568306

RESUMEN

Based on the phase separation phenomenon in micro-droplets, polymer-lipid Janus particles were prepared on a microfluidic flow focusing chip. Phase separation of droplets was caused by solvent volatilization and Janus morphology was formed under the action of interfacial tension. Because phase change from solid to liquid of the lipid hemisphere could be triggered by physiological temperature, the lipid hemisphere could be used for rapid release of drugs. While the polymer we selected was pH sensitive that the polymer hemisphere could degrade under acidic conditions, making it possible to release drugs in a specific pH environment, such as tumor tissues. Janus particles with different structures were obtained by changing the experimental conditions. To widen the application range of the particles, fatty alcohol and fatty acid-based phase change materials were also employed to prepare the particles, such as 1-tetradecanol, 1-hexadecanol and lauric acid. The melting points of these substances are higher than the physiological temperature, which can be applied in fever triggered drug release or in thermotherapy. The introduction of poly (lactic-co-glycolic acid) enabled the formation of multicompartment particles with three distinct materials. With different degradation properties of each compartment, the particles generated in this work may find applications in programmed and sequential drug release triggered by multiple stimuli.

4.
ACS Appl Mater Interfaces ; 12(15): 17193-17206, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32207914

RESUMEN

Sorafenib, a multitargeted kinase inhibitor, has been reported to elicit a limited therapeutic effect in hepatocellular carcinoma (HCC). Currently, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful modality for cancer therapy. However, few studies have been reported the effectiveness of the combination of sorafenib with PDT and PTT in HCC. Herein, we designed and synthesized bovine serum albumin (BSA)-coated zinc phthalocyanine (ZnPc) and sorafenib (SFB) nanoparticle (ZnPc/SFB@BSA). The obtained ZnPc/SFB@BSA was able to trigger PDT, PTT, and chemotherapy. After irradiation by a 730 nm light, ZnPc/SFB@BSA significantly suppressed HCC cell proliferation and metastasis while promoted cell apoptosis in vitro. Furthermore, intravenous injection of ZnPc/SFB@BSA led to dramatically reduced tumor growth in an orthotopic xenograft HCC model. More importantly, ZnPc/SFB@BSA presented low toxicity and adequate blood compatibility. Therefore, a combination of ZnPc with sorafenib via BSA-assembled nanoparticle can markedly suppress HCC growth, representing a promising strategy for HCC patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/terapia , Indoles/química , Neoplasias Hepáticas/terapia , Nanocápsulas/química , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/uso terapéutico , Sorafenib/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Indoles/metabolismo , Indoles/uso terapéutico , Isoindoles , Luz , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Ratones , Ratones Desnudos , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Especies Reactivas de Oxígeno , Albúmina Sérica Bovina/química , Sorafenib/metabolismo , Sorafenib/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Compuestos de Zinc
5.
Int J Clin Exp Med ; 8(10): 19481-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26770596

RESUMEN

Some reports have demonstrated that deep brain stimulation (DBS) is a promising treatment for patients who suffer from intractable anorexia nervosa. However, the nature of DBS may not be viewed as a standard clinical treatment option for anorexia nervosa because of the unpredictable outcome before DBS. Just like DBS in the brain, electroacupuncture at acupoints is also efficient in treating refractory anorexia nervosa. Some neuroimaging studies using functional magnetic resonance imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) had revealed that both DBS and electroacupuncture at acupoints with electrical stimulation are related to the changes in cerebral glucose metabolism. Therefore, we hypothesize that the changes in cerebral glucose metabolism after electroacupuncture might be useful to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa.

10.
World J Gastroenterol ; 9(12): 2742-4, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14669325

RESUMEN

AIM: To investigate the effects of long-term tea polyphenols (TPs) consumption on hepatic microsomal drug-metabolizing enzymes and liver function in rats. METHODS: TPs were administered intragastrically to rats at the doses of 833 mg.kg(-1).d(-1) (n=20) and 83.3 mg.kg(-1).d(-1) (n=20) respectively for six months. Controlled group (n=20) was given same volume of saline solution. Then the contents of cytochrome P450, b5, enzyme activities of aminopyrine N-demethylase (ADM), glutathione S-transferase (GST) and the biochemical liver function of serum were determined. RESULTS: The contents of cytochrome P450 and b5 in the livers of male rats in high dose groups (respectively 2.66 +/- 0.55, 10.43 +/- 2.78 nmol.mg MS pro(-1)) were significantly increased compared with the control group (1.08 +/- 1.04, 5.51 +/- 2.98 nmol.mg MS pro(-1); P<0.01, respectively). The enzymatic activities of ADM in the livers of female rats in high dose groups (0.91 +/- 0.08 mmol.mg MS pro(-1)min(-1)) were increased compared with the control group (0.82 +/- 0.08 mmol.mg MS pro(-1).min(-1); P<0.05). The GST activity was unchanged in all treated groups, and the function of liver was not obviously changed. CONCLUSION: The antidotal capability of rats' livers can be significantly improved after long-term consumption of TPs. There are differences in changes of drug-metabolizing enzymes between the sexes induced by TPs and normal condition.


Asunto(s)
Flavonoides/farmacología , Microsomas Hepáticos/enzimología , Fenoles/farmacología , , Aminopirina N-Demetilasa/efectos de los fármacos , Aminopirina N-Demetilasa/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/efectos de los fármacos , Glutatión Transferasa/metabolismo , Pruebas de Función Hepática , Masculino , Microsomas Hepáticos/efectos de los fármacos , Polifenoles , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA