Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Metab ; 36(2): 438-453.e6, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325338

RESUMEN

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.


Asunto(s)
Diabetes Mellitus , Núcleo Hipotalámico Paraventricular , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Transcriptoma/genética , Hipotálamo/metabolismo , Obesidad/metabolismo , Diabetes Mellitus/metabolismo , Perfilación de la Expresión Génica
2.
Protein Cell ; 13(6): 394-421, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826123

RESUMEN

Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.


Asunto(s)
Envejecimiento , Hipotálamo , Encéfalo/metabolismo , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Obesidad/metabolismo
3.
Front Neurol ; 12: 731606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777200

RESUMEN

Introduction: Parkinson's disease (PD) is a common neurodegenerative disease that seriously impairs patients' quality of life, and increases the burden of patients and caregivers. Both drugs and exercise can alleviate its motor and non-motor symptoms, improving the quality of life for PD patients. Telehealth, an increasingly popular tool, makes rehabilitation accessible at home, overcoming the inconvenience of traffic and scheduling. Care-PD is a phone application designed for rehabilitation training, which provides Tai Chi and stretching exercises through tutorial videos as well as an online evaluation system. In this protocol, we will explore the efficacy of Tai Chi and stretching exercises as a PD rehabilitation therapy based on the smartphone application Care-PD. Methods and Analysis: A double-blind, parallel randomized controlled trial will be conducted in this study. The recruitment, intervention, and evaluation processes will be implemented through the Care-PD application. Persons with PD will fill out questionnaires on Activities of Daily Living (ADL), upload the latest case report, and sign the informed consent form in the application. Afterward, doctors and researchers will screen and enroll 180 participants who will be randomly (1:1:1) assigned to Tai Chi group, stretching exercises group, or control group. The subjects will participate in a 1-h exercise session three times per week for 12 weeks, ending with another 4 weeks of follow-up study. Each exercise session includes 10 min of warm-up, 45 min of exercise, and 5 min of cool-down. The primary outcomes are Motor Aspects of Experiences of Daily Living and the 39-item Parkinson's disease Questionnaire. The secondary outcomes include the 9-item Wearing-Off Questionnaire, the Freezing of Gait Questionnaire, the Caregiver Strain Index, Non-motor Experiences of Daily Living, ADL, and Morse Fall Scale. All assessments will be performed at baseline, week 12 and 16. Discussion: Care-PD integrates subject recruitment, intervention, and evaluation, providing a new perspective on clinical rehabilitation for persons with PD. This study will evaluate the efficacy of Tai Chi and stretching exercises on patients' quality of life and disease progression based on a smartphone application. We aim to provide a new rehabilitation training platform for persons with PD. Ethics and Dissemination: This study was approved by the Scientific Research Ethics Committee (102772020RT132) of Shanghai University of Sport. Data collection begins after the approval of the ethics committee. The participants must sign an informed consent form before enrollment. The results will be published in relevant journals, seminars, and be disseminated among rehabilitation practitioners and patients with PD. Clinical Trial Registration: Chinese Clinical Trial Registry, identifier [ChiCTR2100042096]. Registered on January 13, 2021.

4.
Front Endocrinol (Lausanne) ; 12: 694204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367066

RESUMEN

The 5-hydroxytryptamine 2C receptor (5-HTR2C) is a class G protein-coupled receptor (GPCR) enriched in the hypothalamus and the brain stem, where it has been shown to regulate energy homeostasis, including feeding and glucose metabolism. Accordingly, 5-HTR2C has been the target of several anti-obesity drugs, though the associated side effects greatly curbed their clinical applications. Dissecting the specific neural circuits of 5-HTR2C-expressing neurons and the detailed molecular pathways of 5-HTR2C signaling in metabolic regulation will help to develop better therapeutic strategies towards metabolic disorders. In this review, we introduced the regulatory role of 5-HTR2C in feeding behavior and glucose metabolism, with particular focus on the molecular pathways, neural network, and its interaction with other metabolic hormones, such as leptin, ghrelin, insulin, and estrogens. Moreover, the latest progress in the clinical research on 5-HTR2C agonists was also discussed.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético/genética , Receptor de Serotonina 5-HT2C/fisiología , Animales , Encéfalo/metabolismo , Estrógenos/fisiología , Ghrelina/fisiología , Homeostasis/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Insulina/fisiología , Leptina/fisiología , Red Nerviosa/fisiología , Receptor de Serotonina 5-HT2C/metabolismo , Transducción de Señal/genética
5.
Front Neurol ; 11: 615861, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519695

RESUMEN

Introduction: With an increasing number of China's aging population, Parkinson's disease (PD) increases year by year. Persons with PD exhibit abnormal balance functions, leading to motor skills difficulties, such as unstable walking or even falling. Therefore, activities of daily living and quality of life are affected. This study aims to explore the effectiveness of Tai Chi training based on the mobile phone app in improving the balance ability of persons with PD. Methods and Analysis: A randomized, single-blind, parallel controlled trial will be conducted in this study. One hundred forty-four persons with PD who meet the inclusion criteria will be randomly divided into a 1:1:1 ratio: (1) control group, (2) basic experimental group (basic app with no Tai Chi training features), and (3) balanced-enhanced experimental group (basic app with Tai Chi training features). Individuals with PD will be evaluated on balance and motor function outcomes. The primary outcome measure is the limits of stability (including the maximum excursion and direction control); the secondary outcome measures include the Unified Parkinson's Disease Rating Scale III (UPDRS-III), Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up & Go (TUG), 6-Minute Walk Test (6MWT), and 39-item Parkinson's Disease Questionnaire (PDQ-39). Each group of patients will go through an assessment at baseline, 17 and 33 weeks. Discussion: This study will evaluate the effectiveness of the mobile phone app Tai Chi training on the balance function of persons with PD. We assume that a challenging Tai Chi project based on a mobile phone app will improve balance in the short and long term. As walking stability progresses, it is expected that daily activities and quality of life improve. These findings will be used to improve the effectiveness of future home management measures for persons with PD. Ethics and Dissemination: This study has been approved by the ethical review committee of the Shanghai University of Sport (approval number: 102772019RT056). Informed consent will be obtained from all participants or their guardians. The authors intend to submit the study findings to peer-reviewed journals or academic conferences to be published. Clinical Trial Registration: Chinese Clinical Trial Registry (ChiCTR2000029135).

6.
J Mol Cell Biol ; 10(5): 402-410, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423168

RESUMEN

Leptin receptor (LepRb) signaling pathway in the hypothalamus of the forebrain controls food intake and energy expenditure in response to an altered energy state. Defects in the LepRb signaling pathway can result in leptin-resistance and obesity. Leucine zipper transcription factor like 1 (Lztfl1)/BBS17 is a member of the Bardet-Biedl syndrome (BBS) gene family. Human BBS patients have a wide range of pathologies including obesity. The cellular and molecular mechanisms underlying Lztfl1-regulated obesity are unknown. Here, we generated Lztfl1f/f mouse model in which Lztfl1 can be deleted globally and in tissue-specific manner. Global Lztfl1 deficiency resulted in pleiotropic phenotypes including obesity. Lztfl1-/- mice are hyperphagic and showed similar energy expenditure as WT littermates. The obese phenotype of Lztfl1-/- mice is caused by the loss of Lztfl1 in the brain but not in the adipocytes. Lztfl1-/- mice are leptin-resistant. Inactivation of Lztfl1 abolished phosphorylation of Stat3 in the LepRb signaling pathway in the hypothalamus upon leptin stimulation. Deletion of Lztfl1 had no effect on LepRb membrane localization. Furthermore, we observed that Lztfl1-/- mouse embryonic fibroblasts (MEFs) have significantly longer cilia than WT MEFs. We identified several proteins that potentially interact with Lztfl1. As these proteins are known to be involved in regulation of actin/cytoskeleton dynamics, we suggest that Lztfl1 may regulate leptin signaling and ciliary structure via these proteins. Our study identified Lztfl1 as a novel player in the LepRb signaling pathway in the hypothalamus that controls energy homeostasis.


Asunto(s)
Síndrome de Bardet-Biedl/patología , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Leptina/metabolismo , Factores de Transcripción/metabolismo , Animales , Síndrome de Bardet-Biedl/metabolismo , Cilios/patología , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Obesidad/genética , Prosencéfalo/metabolismo , Receptores de Leptina/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética
7.
Diabetes ; 66(3): 663-673, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28028078

RESUMEN

Whether neuronal inositol-requiring enzyme 1 (Ire1) is required for the proper regulation of energy balance and glucose homeostasis is unclear. We found that pro-opiomelanocortin (Pomc)-specific deficiency of Ire1α accelerated diet-induced obesity concomitant with a decrease in energy expenditure. This hypometabolic phenotype included deficits in thermogenic responses to diet and cold exposure as well as "beiging" of white adipose tissue. We also demonstrate that loss of Ire1α in Pomc neurons impaired whole-body glucose and insulin tolerance as well as hepatic insulin sensitivity. At the cellular level, deletion of Ire1α in Pomc neurons elevated hypothalamic endoplasmic reticulum (ER) stress and predisposed Pomc neurons to leptin and insulin resistance. Together, the current studies extend and confirm conclusions that Ire1α-Xbp1s and associated molecular targets link ER stress in arcuate Pomc neurons to aspects of normal energy and glucose homeostasis.


Asunto(s)
Glucemia/metabolismo , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Metabolismo Energético/genética , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Termogénesis/genética , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Western Blotting , Frío , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis/genética , Hipotálamo/metabolismo , Inmunohistoquímica , Resistencia a la Insulina/genética , Leptina/metabolismo , Masculino , Ratones , Técnicas de Placa-Clamp , Proopiomelanocortina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Artículo en Chino | MEDLINE | ID: mdl-22493891

RESUMEN

OBJECTIVE: To explore the intervention effect and the possibly mechanism of the glutamine (Gln) on the opening change of the permeability transition pore (PTP) in the myocardial mitochondrial membrane under the overtraining state. METHODS: 30 SD rats were randomly divided into 3 groups (n = 10): control group (CG group), overtraining group (OG group) and supplementary (Gln) + overtraining group group). Spectrophotometry was used to test the openness of the permeability transition pore in the myocardial mitochondrial membrane. Electrochemistry was used to test the malondialdehyde (MDA) and the glutathione (GSH) content and the phospholipase A2 (PLA2) activity. RESULTS: OG group compared with the GOG group, the absorbance (A0) and the absorbance change (Delta A) were decreased significantly (P < 0.05). Rh123 fluorescence (F0) intensity was significantly increased (P < 0.05). Rhodamine123 (Rh123) fluorescence change (delta F) was significantly decreased (P < 0.05). Compared with the GOG, the mitochondrial GSH was significantly decreased (P < 0.05), the PLA2 activity and the content of MDA were significantly increased (P <0.05). CONCLUSION: Overtraining could lead to opening increase of permeability transition pore in the myocardial mitochondrial membrane, after overtraining, the production of the reactive oxygen species (ROS) and PLA2 activity were increased, GSH content was decreased. But added exogenous Gln had a significant intervention effect for these changes.


Asunto(s)
Glutamina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/fisiología , Animales , Glutatión/metabolismo , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/metabolismo , Permeabilidad , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA