Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 23(1): 200, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330478

RESUMEN

BACKGROUND: Chronic heart failure (CHF) is actually a disease caused by an imbalanced energy metabolism between myocardial energy demand and supply, ultimately resulting in abnormal myocardial cell structure and function. Energy metabolism imbalance plays an important role in the pathological process of chronic heart failure (CHF). Improving myocardial energy metabolism is a new strategy for the treatment of CHF. Shengxian decoction (SXT), a well-known traditional Chinese medicine (TCM) formula, has good therapeutic effects on the cardiovascular system. However, the effects of SXT on the energy metabolism of CHF is unclear. In this study, we probed the regulating effects of SXT on energy metabolism in CHF rats using various research methods. METHODS: High-performance liquid chromatography (HPLC) analysis was used to perform quality control of SXT preparations. Then, SD rats were randomly assigned into 6 groups: sham, model, positive control (trimetazidine) and high-, middle-, and low-dose SXT groups. Specific reagent kits were used to detect the expression levels of ALT and AST in rats' serum. Echocardiography was used to evaluate cardiac function. H&E, Masson and TUNEL staining were performed to examine myocardial structure and myocardial apoptosis. Colorimetry was used to determine myocardial ATP levels in experimental rats. Transmission electron microscopy was used to observe the ultrastructure of myocardial mitochondria. ELISA was used to estimate CK, cTnI, and NT-proBNP levels, and LA、FFA、MDA、SOD levels. Finally, Western blotting was used to examine the protein expression of CPT-1, GLUT4, AMPK, p-AMPK, PGC-1α, NRF1, mtTFA and ATP5D in the myocardium. RESULTS: HPLC showed that our SXT preparation method was feasible. The results of ALT and AST tests indicate that SXT has no side effect on the liver function of rats. Treatment with SXT improved cardiac function and ventricular remodelling and inhibited cardiomyocyte apoptosis and oxidative stress levels induced by CHF. Moreover, CHF caused decrease ATP synthesis, which was accompanied by a reduction in ATP 5D protein levels, damage to mitochondrial structure, abnormal glucose and lipid metabolism, and changes in the expression of PGC-1α related signal pathway proteins, all of which were significantly alleviated by treatment with SXT. CONCLUSION: SXT reverses CHF-induced cardiac dysfunction and maintains the integrity of myocardial structure by regulating energy metabolism. The beneficial effect of SXT on energy metabolism may be related to regulating the expression of the PGC-1α signalling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Insuficiencia Cardíaca , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Quinasas Activadas por AMP/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/metabolismo , Adenosina Trifosfato/metabolismo
2.
Chin J Nat Med ; 19(10): 758-771, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34688466

RESUMEN

Berberis amurensis (Berberidaceae) is a traditional Chinese medicine, which is often used to treat hypertension, inflammation, dysentery and enteritis. It contains alkaloids, mainly including berberine, berbamine, magnoflorine, jatrorrhizine and palmatine. Berberis amurensis extracts (BAEs) is often orally taken. Oral herbs might be metabolized by intestinal bacteria in the small intestine. However, the interaction between the herb and the gut microbiota is still unknown. In the current study, UPLC/Q-TOF-MS/MS combined with Metabolitepilot and Peakview software was used to identify the metabolites of BAEs in anti-biotic cocktail induced pseudo germ-free rats and normal rats. As a result, a total of 46 metabolites in normal rats were detected and its main metabolic pathways include demethylation, dehydrogenation, methylation, hydroxylation, sulfation and glucuronidation. Only 29 metabolites existed in pseudo germ-free rats. Dehydrogenated metabolites (M29, M30, M34 and M36), methylated metabolites (M33, M41 and M46) and other metabolites were not detected in pseudo germ-free rats. The result implied that the intestinal bacteria have an influence on the metabolism of BAEs. Furthermore, this investigation might contribute to the understanding of the metabolism of BAEs, and further promote its clinical application.


Asunto(s)
Alcaloides , Berberis , Medicamentos Herbarios Chinos , Animales , Cromatografía Líquida de Alta Presión , Ratas , Espectrometría de Masas en Tándem
3.
Biomed Pharmacother ; 143: 112178, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649308

RESUMEN

Modified citrus pectin (MCP) is a specific inhibitor of galectin-3 (Gal-3) that is regarded as a new biomarker of cardiac hypertrophy, but its effect is unclear. The aim of this study is to investigate the role and mechanism of MCP in isoproterenol (ISO)-induced cardiac hypertrophy. Rats were injected with ISO to induce cardiac hypertrophy and treated with MCP. Cardiac function was detected by ECG and echocardiography. Pathomorphological changes were evaluated by the haematoxylin eosin (H&E) and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes for atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC), and the associated signal molecules were analysed by qRT-PCR and western blotting. The results show that MCP prevented cardiac hypertrophy and ameliorated cardiac dysfunction and structural disorder. MCP also decreased the levels of ANP, BNP, and ß-MHC and inhibited the expression of Gal-3 and Toll-like receptor 4 (TLR4). Additionally, MCP blocked the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), but it promoted the phosphorylation of p38. Thus, MCP prevented ISO-induced cardiac hypertrophy by activating p38 signalling and inhibiting the Gal-3/TLR4/JAK2/STAT3 pathway.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Fármacos Cardiovasculares/farmacología , Janus Quinasa 2/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Pectinas/farmacología , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Galectina 3/metabolismo , Isoproterenol , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Fosforilación , Ratas Wistar , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA