Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38606579

RESUMEN

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Asunto(s)
Litchi , Extractos Vegetales , Ácido gamma-Aminobutírico , Animales , Ratones , Litchi/química , Extractos Vegetales/farmacología , Masculino , Ácido gamma-Aminobutírico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Citocinas/metabolismo , Antiinflamatorios/farmacología , Proteínas de Plantas/farmacología , Inflamación/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Frutas/química , Aspartato Aminotransferasas
2.
Ultrason Sonochem ; 95: 106355, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898250

RESUMEN

The pro-inflammation activity of litchi thaumatin-like protein (LcTLP) led to be responsible for the occurrence of adverse reactions after excessive consumption of litchi. This study aimed to characterize the changes in the structure and inflammatory activity of LcTLP induced by ultrasound treatment. Significant molecular structure of LcTLP changes occured at 15 min ultrasound treatment, and then tended to recover with subsequent treatment. Secondary structure (α-helices decreased from 17.3% to 6.3%), tertiary structure (the maximum endogenous fluorescence intensity decreased), and microstructure (mean hydrodynamic diameter reduced from 4 µm to 50 nm) of the LcTLP treated for 15 min (LT15) were significantly affected, which led to the inflammatory epitope of LcTLP (domain II and V-cleft) unfolded. In vitro, LT15 had a significant anti-inflammatory response, which inhibited NO production and had the best effect at 50 ng/mL in RAW264.7 macrophages (73.24%). Moreover, proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secretion and mRNA expression levels were also significantly lower compared with untreated LcTLP (p < 0.05). Western blot further confirmed that the expressions of IκB-α, p65, p38, ERK and JNK reduced markedly (p < 0.05), which indicated LT15 inhibited the inflammatory response through NF-κB and MAPK transduction pathways. Overall, it can be hypothesized that LT15 exposed to low frequency ultrasonic fields have a direct effect on the protein surface structure and thus on the entry of LT15 into cells, making 15-minute ultrasound treatment potentially useful in reducing the pro-inflammatory properties of litchi or related liquid products.


Asunto(s)
Litchi , FN-kappa B , FN-kappa B/metabolismo , FN-kappa B/farmacología , Transducción de Señal , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Ultrasonido , Macrófagos , Citocinas/metabolismo , Citocinas/farmacología
3.
Food Chem ; 405(Pt A): 134855, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36368102

RESUMEN

Characterization and bioactivity of A-type procyanidins was investigated in litchi fruitlet (LF) at different stages and mature pericarp (MP) of 5 litchi cultivars. The content of total phenols in LFs was higher than that of MP and showed good antioxidant activity. Eleven procyanidins were identified in samples, including procyanidin A2, procyanidin A4, and 1 dimer, 2 trimers, and 1 tetramer of A-type procyanidin. Also, A-type procyanidin could stably exist in LFs stage, but declined substantially after maturity, which was about 1.45 - 3.56 times than mature pericarp. In addition, the second stage of LFs showed strong anti-inflammatory and anti-proliferative activities, in which monomer and A-type procyanidin trimers in LFs were significantly correlated with antioxidant (r > 0.72; p < 0.01) and anti-inflammatory (r = 0.53; p < 0.05) activities, respectively. Therefore, litchi in LF stage could be a good source of A-type oligomer procyanidins which had good application value.


Asunto(s)
Biflavonoides , Catequina , Litchi , Proantocianidinas , Extractos Vegetales/farmacología , Frutas , Antioxidantes
4.
J Control Release ; 351: 896-906, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36202152

RESUMEN

Targeted antibiotic delivery system would be an ideal solution for the treatment of enteropathogenic infections since it avoids the excessive usage of antibiotics clinically, which may lead to threat on public health and food safety. Salmonella spp. are Enteropathogens, but they are also robust H2S producers in the intestinal tracts of hosts. To this end, the PEGylated poly (α lipoic acid) (PEG-PALA) copolymer nanoparticles with hydrophilic exterior and hydrophobic interior were designated in this study to encapsulate the antibiotics and release them in response to H2S produced by Salmonella spp. The PEG-PALA nanoparticles demonstrated excellent stability in vitro and biocompatibility toward mammalian Caco-2 and 293 T cells. The release of ciprofloxacin from PEG-PALA nanoparticle was only 25.44 ± 0.57% and 26.98 ± 1.93% (w/w) in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) solutions without H2S stimulation. However, the release amounts of ciprofloxacin were up to 73.68 ± 1.63% (w/w) in the presence of 1 mM Na2S as H2S source. In the mouse infection model, PEG-PALA nanoparticles encapsulated with ciprofloxacin (PEG-PALA@CIP) reduced the Salmonella colonization in the heart, liver, spleen, lung, cecum, and faeces, prolonged ciprofloxacin persistence in the intestine while reducing its absorption into the blood. More importantly, these nanoparticles reduced 3.4-fold of Enterobacteriaceae levels and increased 1.5-fold of the Lactobacillaceae levels compared with the drug administered in the free form. Moreover, these nanoparticles resulted in only minimal signs of intestinal tract inflammation. The H2S-responsive antibiotic delivery systems reported in this study demonstrating a variety of advantages including protected the drug from deactivation by gastric and intestinal fluids, maintained a high concentration in the intestinal tract and maximally kept the gut microbiota homeostasis. As such, this targeted antibiotic delivery systems are for the encapsulation of antibiotics to target specific enteropathogens.


Asunto(s)
Nanopartículas , Ácido Tióctico , Humanos , Ratones , Animales , Ciprofloxacina/química , Células CACO-2 , Nanopartículas/química , Salmonella , Antibacterianos/química , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos , Mamíferos
5.
Food Chem ; 386: 132811, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35366632

RESUMEN

Soy protein papain hydrolysate (SPAH) and soy protein pepsin hydrolysate (SPEH) were used as protective agents for mulberry anthocyanin extracts (MAEs) to inhibit its color fading and enhance the anthocyanin stability at pH 6.3. Both SPAH and SPEH showed a significant protective effect on total anthocyanins in MAEs solutions. 1.0 mg/mL of SPEH presented the best protective effect on MAEs by increasing its half-life from 1.8 to 5.7 days. SPAH/SPEH-cyaniding-3-O-glucoside (C3G) interactions were investigated at pH 6.3 by fluorescence, Fourier-transform infrared spectroscopy (FT-IR), and Circular Dichroism (CD). Their association was mainly driven by hydrophobic interactions, and SPEH showed a higher binding affinity for C3G than SPAH, with a KA value of 2.62 × 105 M-1 at 300 K. The second structures of SPAH and SPEH were altered by C3G, with a decrease in the ß-sheets and an increase in the turns and random coils.


Asunto(s)
Antocianinas , Morus , Antocianinas/química , Manipulación de Alimentos , Morus/metabolismo , Papaína , Extractos Vegetales/química , Hidrolisados de Proteína/química , Proteínas de Soja/química , Glycine max/química , Espectroscopía Infrarroja por Transformada de Fourier
6.
Carbohydr Polym ; 281: 119086, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074113

RESUMEN

During processing of plant-based foods, cell wall polysaccharides and polyphenols, such as procyanidins, interact extensively, thereby affecting their physicochemical properties along with their potential health effects. Although hemicelluloses are second only to pectins in affinity for procyanidins in cell walls, a detailed study of their interactions lacks. We investigated the interactions between representative xylose-containing water-soluble hemicelluloses and procyanidins. Turbidity, ITC and DLS were used to determine the relative affinities, and theoretical calculations further ascertained the interactions mechanisms. Xyloglucan and xylan exhibited respectively the strongest and weakest interactions with procyanidins. The different arabinoxylans interacted with procyanidins in a similar strength, intermediate between xyloglucans and xylans. Therefore, the strength of the interaction depended on the structure itself rather than on some incidental properties, e.g., viscosity and molar mass. The arabinose side-chain of arabinoxylan did not inhibit interactions. The computational investigation corroborated the experimental results in that the region of interaction between xyloglucan and procyanidins was significantly wider than that of other hemicelluloses.


Asunto(s)
Proantocianidinas , Pared Celular/química , Pectinas/química , Polisacáridos/química , Proantocianidinas/química , Xilanos/química , Xilosa/análisis
7.
Compr Rev Food Sci Food Saf ; 20(5): 4841-4880, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34288366

RESUMEN

Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.


Asunto(s)
Cacao , Polifenoles , Antioxidantes , Manipulación de Alimentos , Humanos ,
8.
Carbohydr Polym ; 262: 117935, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838812

RESUMEN

The contribution of ATR-FTIR spectroscopy to study cell wall polysaccharides (CWPs) was carefully investigated. The region 1800-800 cm-1 was exploited using principal component analysis and hierarchical clustering on a large range of different powders of CWPs based on their precise chemical characterization. Relevant wavenumbers were highlighted for each CWP: 1035 cm-1 was attributed to xylose-containing hemicelluloses, 1065 and 807 cm-1 to mannose-containing hemicelluloses, 988 cm-1 to cellulose, 1740 and 1600 cm-1 to homogalacturonans according to the degree of methylation. Some band positions were affected by macromolecular arrangements (especially hemicellulose-cellulose interactions). However, as arabinan and galactan did not reveal distinctive absorption bands, ATR-FTIR spectroscopy did not allow the discrimination of cell walls differing by the abundance of these polysaccharides, e.g., those extracted from apple and beet. Therefore, the application of ATR-FTIR could remain sometimes limited due to the complexity of overlapping spectra bands and vibrational coupling from the large diversity of CWP chemical bonds.


Asunto(s)
Pared Celular/química , Plantas/química , Polisacáridos/química , Celulosa/química , Galactanos/química , Monosacáridos/química , Pectinas/química , Análisis de Componente Principal/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
9.
Compr Rev Food Sci Food Saf ; 20(2): 2015-2039, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33594822

RESUMEN

Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.


Asunto(s)
Frutas , Pectinas , Pared Celular , Polisacáridos , Verduras
10.
Int J Biol Macromol ; 168: 105-115, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33309654

RESUMEN

A chitosan-based (CS) film was developed with nanosized TiO2 and red apple pomace extract (APE). The intermolecular interactions of CS, TiO2 and APE were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. TiO2 nanoparticles remarkably improved the water vapor and UV-Vis light barrier properties, mechanical strength and thermal stability of CS-APE films. The strong antioxidant abilities of CS-APE and CS-TiO2-APE films were characterized. Nano-TiO2 and APE showed a synergistic enhancement of the antimicrobial activity in CS matrix. The addition of TiO2 nano-particles into CS-APE films resulted the sensitive color variations, which applied successfully as an indicator to monitor the freshness of salmon fillets. Consequently, the development of CS-APE-TiO2 film provides a new solution to convert rad apple pomace to an active and multifunctional food packaging material with considerable mechanical, antibacterial, antioxidant and pH-responsive color-changing properties.


Asunto(s)
Quitosano/química , Manipulación de Alimentos/métodos , Malus/química , Antibacterianos/química , Antioxidantes/química , Embalaje de Alimentos/métodos , Frutas/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Polifenoles/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Titanio/química , Difracción de Rayos X/métodos
11.
Ecotoxicol Environ Saf ; 196: 110525, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32224370

RESUMEN

Fragrant rice is a high-valued quality rice type which is gaining much popularity over the globe due to its better cooking qualities and special aromatic characteristics. Selenium (Se) and silicon (Si) could improve the growth and yield of rice; however, the combine effects of Se and Si (Se-Si treatments) on rice grain quality, aroma and lodging in fragrant rice were rarely investigated. The pot and field experiments were conducted with two fragrant rice cultivars i.e., Xiangyaxiangzhan and Yuxiangyouzhan, grown under three Se levels i.e., 0, 120, and 240 mg kg-1 of soil (for pot experiment) and 0, 300, and 600 kg ha-1 (for field experiment) regarded as LSe, MSe and HSe, respectively and two Si levels i.e., 0 and 60 mg kg-1 of soil (for pot experiment) and 0 and 150 kg ha-1 (for field experiment) regarded as -Si and +Si, respectively. Results depicted that the Se-Si treatments regulated head rice yield, grain yield and yield related traits and the HSe+Si treatment sustainably improved the grain yield and head rice yield by regulating plant growth, antioxidant response and malondialdehyde (MDA) contents in fragrant rice. The Se-Si treatments also improved the grain 2AP contents owing to regulation in the proline, pyrroline-5-carboxylate (P5C) and γ-aminobutyric acid (GABA) contents. Besides, Se-Si treatments also regulated the grain quality attributes and influenced the plant Se contents. Moreover, the Si mitigated Se-induced lodging resulted from changes in the lodging parameters i.e., lodging index, fresh weight per tiller, pushing resistance force, plant height and bending moment. Overall, the Se and Si application improved the grain yield and regulated the dry weight accumulation, antioxidant attributes and quality attributes. Meanwhile, the Si application mitigated the negative effect of Se-induced lodging in fragrant rice.


Asunto(s)
Grano Comestible/efectos de los fármacos , Odorantes/análisis , Oryza/efectos de los fármacos , Selenio/farmacología , Silicio/farmacología , Antioxidantes/análisis , Relación Dosis-Respuesta a Droga , Grano Comestible/química , Grano Comestible/crecimiento & desarrollo , Malondialdehído/análisis , Oryza/química , Oryza/crecimiento & desarrollo , Prolina/análisis , Pirroles/análisis , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA