Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38656158

RESUMEN

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Asunto(s)
Nanopartículas , Paratuberculosis , Animales , Nanopartículas/química , Paratuberculosis/inmunología , Paratuberculosis/prevención & control , Ratones , Tretinoina/química , Tretinoina/farmacología , Mycobacterium avium subsp. paratuberculosis/inmunología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Ratones Endogámicos C57BL , Femenino , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/administración & dosificación , Vacunas Bacterianas/inmunología , Ratones Endogámicos BALB C
2.
Mol Oral Microbiol ; 36(1): 67-79, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33316854

RESUMEN

Ligustrum robustum (Roxb.) Blume is utilized as a traditional Chinese herbal tea with various health benefits and protective effects. Streptococcus mutans is an important cariogenic oral bacteria species. The present study aimed to assess the influence of Ligustrum robustum extract (LRE) on the biofilm formation of S. mutans and the mechanism of its action, as well as to identify its chemical components. For chemical identification, HPLC-MS and nuclear magnetic resonance were applied and four identified phytochemicals were reported (Ligurobustoside B, Ligurobustoside N, Ligurobustoside J, and Ligurobustoside C). The dose-dependent (0.5 to 2.0 µg/µL) antimicrobial toxicity of LRE against S. mutans biofilm formation and exopolysaccharide (EPS) synthesis was evaluated by confocal laser scanning microscopy (CLSM), Crystal violet stain, and CFU counting. The microstructure of S. mutans biofilm treated with LRE was investigated both on glass coverslips and ex vivo bovine dental enamel by scanning electron microscopy (SEM). Moreover, LRE downregulated the expression of S. mutans glucosyltransferase-encoding genes gtfB, gtfC, and gtfD, and the quorum sensing (QS) factors comD and comE, suggesting its toxic mechanism. In addition, the result of CCK-8 test on human oral cells revealed an acceptable biocompatibility of LRE. These findings indicated the possible application of this daily consumed herbal tea for caries prevention.


Asunto(s)
Caries Dental , Ligustrum , Animales , Biopelículas , Bovinos , Caries Dental/prevención & control , Humanos , Extractos Vegetales/farmacología , Streptococcus mutans
3.
Arch Oral Biol ; 116: 104762, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32474211

RESUMEN

OBJECTIVE: The present study aimed to evaluate the effect of Rhodiola rosea extract (RE) on Streptococcus mutans biofilm formation and the relevant mechanism of its action. METHODS: The effect of RE on the biofilm formation and extracellular polysaccharides (EPS) synthesis of S. mutans was assessed by confocal laser scanning microscopy (CLSM), crystal violet staining and CFU counting method. Scanning electron microscopy (SEM) was applied to observe the surface morphology of S. mutans biofilms formed on glass coverslips and dental enamel. To study the relevant mechanism, quantitative real time PCR (qRT-PCR) and zymogram assay were applied to measure the expression of virulence genes and the enzymatic activity of glucosyltransferases (Gtfs) under the treatment of RE. The CCK-8 assay was also performed on macrophages (RAWs) and human oral keratinocytes (HOKs) in order to evaluate its biocompatibility. RESULTS: As a result, RE inhibited the biofilm formation and EPS synthesis of S. mutans. RE also suppressed the expression of gtf genes and quorum sensing (QS) system as well as the enzymatic activity of Gtf proteins. Moreover, RE exhibited a good biocompatibility to human cells. CONCLUSIONS: This study provides the evidence for RE as a novel anti-biofilm agent for clinical use.


Asunto(s)
Biopelículas , Caries Dental , Rhodiola , Biopelículas/efectos de los fármacos , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Humanos , Extractos Vegetales/farmacología , Streptococcus mutans/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA