Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 7530102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132352

RESUMEN

PURPOSE: Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS: A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS: We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION: Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.


Asunto(s)
Electroacupuntura/métodos , Exosomas/metabolismo , MicroARNs/genética , Traumatismos de los Nervios Periféricos/sangre , Traumatismos de los Nervios Periféricos/terapia , Recuperación de la Función/genética , Nervio Ciático/lesiones , Transducción de Señal/genética , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Línea Celular Transformada , Modelos Animales de Enfermedad , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Masculino , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Células de Schwann/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
2.
Front Neurosci ; 14: 525144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132818

RESUMEN

Growing evidence indicates that electroacupuncture (EA) has a definite effect on the treatment of peripheral nerve injury (PNI), but its mechanism is not completely clear. MicroRNAs (miRNAs) are involved in the regulation of a variety of biological processes, and EA may enhance PNI repair by regulating miRNAs. In this study, the rat sciatic nerve injury model was treated with EA for 4 weeks. Acupoints Huantiao (GB30) and Zusanli (ST36) were stimulated by EA 20 min once a day, 6 days a week for 4 weeks. We found that EA treatment downregulated the expression of miR-1b in the local injured nerve. In vitro experiments showed that overexpression of miR-1b inhibited the expression of brain-derived neurotrophic factor (BDNF) in rat Schwann cell (SC) line, while BDNF knockdown inhibited the proliferation, migration, and promoted apoptosis of SCs. Subsequently, the rat model of sciatic nerve injury was treated by EA treatment and injection of agomir-1b or antagomir-1b. The nerve conduction velocity ratio (NCV), sciatic functional index (SFI), and S100 immunofluorescence staining were examined and showed that compared with the model group, NCV, SFI, proliferation of SC, and expression of BDNF in the injured nerves of rats treated with EA or EA + anti-miR-1b were elevated, while EA + miR-1b was reduced, indicating that EA promoted sciatic nerve function recovery and SC proliferation through downregulating miR-1b. To summarize, EA may promote the proliferation, migration of SC, and nerve repair after PNI by regulating miR-1b, which targets BDNF.

3.
Neural Regen Res ; 13(3): 477-483, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29623933

RESUMEN

Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture- and moxibustion-based mechanisms underlying nerve repair are still unclear. Here, in vivo and in vitro experiments uncovered one mechanism through which electroacupuncture and moxibustion affect regeneration after peripheral nerve injury. We first established rat models of sciatic nerve injury using neurotomy. Rats were treated with electroacupuncture or moxibustion at acupoints Huantiao (GB30) and Zusanli (ST36). Each treatment lasted 15 minutes, and treatments were given six times a week for 4 consecutive weeks. Behavioral testing was used to determine the sciatic functional index. We used electrophysiological detection to measure sciatic nerve conduction velocity and performed hematoxylin-eosin staining to determine any changes in the gastrocnemius muscle. We used immunohistochemistry to observe changes in the expression of S100-a specific marker for Schwann cells-and an enzyme-linked immunosorbent assay to detect serum level of nerve growth factor. Results showed that compared with the model-only group, sciatic functional index, recovery rate of conduction velocity, diameter recovery of the gastrocnemius muscle fibers, number of S100-immunoreactive cells, and level of nerve growth factor were greater in the electroacupuncture and moxibustion groups. The efficacy did not differ between treatment groups. The serum from treated rats was collected and used to stimulate Schwann cells cultured in vitro. Results showed that the viability of Schwann cells was much higher in the treatment groups than in the model group at 3 and 5 days after treatment. These findings indicate that electroacupuncture and moxibustion promoted nerve regeneration and functional recovery; its mechanism might be associated with the enhancement of Schwann cell proliferation and upregulation of nerve growth factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA