Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 102(8): 3160-3168, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34786719

RESUMEN

BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined. RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC < 0) and 2 up-regulated genes (logFC > 0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1. CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.


Asunto(s)
Calor , Enfermedades Inflamatorias del Intestino , Apoptosis , Células CACO-2 , Culinaria , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Aceites , Aceites de Plantas/química , Aceites de Plantas/farmacología , Triglicéridos/química
2.
J Food Sci ; 84(4): 762-769, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30875441

RESUMEN

The triacylglycerol (TAG) matrix of argan oil (AO) bodies (AOB) along with the TAGs of AO extracted from the same kernels using an organic solvent, were identified and quantified using the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generally, both samples showed a similar TAGs profile but AO found to have three extra TAGs in low amount. In total 23 and 26 different TAGs were identified in AOBs and AO, respectively. The most abundant TAGs were OOL, POO, OOO, and POL in both samples. Furthermore, oleic acid, linoleic acid, and palmitic acid were the major fatty acids in both AOBs and AO. To the best of our knowledge, this is the first research that studied the TAGs matrix of an oil body revealing no major difference between the TAGs profile protected by the AOBs membrane and the oil extracted from the whole seed. PRACTICAL APPLICATION: Seed and kernels oil bodies emulsion tend to be the new source of emulsified oil in food and cosmetic industries. However, before replacing a product with another, we have to make sure that the new alternative can offer better or at least similar benefits. Our results showed that the triacylglycerols (TAGs) matrix and the argan oil (AO) share the same TAGs profile with a relatively close percentage. Therefore, AO bodies can be the perfect pre-emulsified oil for some food products like sauces and creams.


Asunto(s)
Gotas Lipídicas/química , Aceites de Plantas/química , Sapotaceae/química , Triglicéridos/química , Cromatografía Líquida de Alta Presión/métodos , Aceites de Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Triglicéridos/análisis
3.
Food Chem ; 255: 49-57, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29571497

RESUMEN

Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from ß' to ß occurred in FHPKO after the removal of minor components, and from α to ß' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO.


Asunto(s)
Aceite de Coco/química , Aceites de Plantas/química , Cristalización , Hidrogenación , Lípidos/análisis , Nanoestructuras , Aceite de Palma , Termodinámica , Triglicéridos/aislamiento & purificación
4.
J Agric Food Chem ; 66(4): 1015-1022, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29303272

RESUMEN

Oil migration and fat recrystallization in fat-structured food materials can result in significant deterioration in food quality. Consequently, it is important to monitor and quantify the diffusivities of the migrants in fat crystal network. The diffusion coefficients of Nile red dye in liquid oils through fully hydrogenated palm kernel oil (FHPKO)/triolein (OOO) and fully hydrogenated soybean oil (FHSO)/triolein (OOO) systems were evaluated by the fluorescence recovery after photobleaching (FRAP) method. The effective diffusion coefficients (Deff) and mobile fraction (Mf) increased with the decrease of solid fat contents (SFC), with the changes of microstructure from more densely to slightly larger packed clusters for both FHPKO/OOO and FHSO/OOO systems. In addition, microstructural parameters of these systems were estimated by the image analysis. The results showed that the diffusion of dye and liquid oil was affected by the microstructure. The higher Deff was associated with lower fractal dimensions, larger crystal thickness, and larger average particle sizes. Finally, higher-permeability coefficients were calculated according to Darcy's Law, and it was significantly correlated to the Deff.


Asunto(s)
Aceites de Plantas/química , Cristalización , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes , Microscopía Confocal , Oxazinas , Aceite de Palma/química , Aceite de Soja/química , Trioleína/química
5.
J Agric Food Chem ; 61(45): 10798-806, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24147905

RESUMEN

Products rich in 1,3-dibehenoyl-2-oleoyl glycerol (BOB) triglyceride (TAG) were produced by enzymatic interesterification of high oleic acid sunflower oil (HOSO) and behenic acid methyl ester (BME) by 1,3-regiospecific lipase Lipozyme RM IM in a solvent-free system. The impact factors of enzyme load, substrate molar ratio of BME to HOSO (BME/HOSO), reaction time, reaction temperature, and pre-equilibration water activity of the enzyme on BOB content and BME conversions were investigated by single-factor experiments and then optimized using the response surface methodology (RSM). The optimum conditions were as follows: reaction temperature, 72 °C; reaction time, 7.99 h; substrate molar ratio, 2.5:1; enzyme load, 10%; and pre-equilibration water activities of the enzyme, 0.28. The results from the experiments conducted according to the predicted optimal conditions were as follows: the content of BOB was 32.76%, and the conversion of BME was 65.16%. The experimental values agreed with the predicted values, which verified the sufficiency of the quadratic regression models. After purification under the optimal short-range molecular distillation and two-step solvent fractionation, the content of BOB in the target product can reach 77.14%, indicating the great potential for industrial production of the anti-blooming agent.


Asunto(s)
Grasas/química , Glicerol/química , Lipasa/química , Biocatálisis , Esterificación , Cinética , Aceites de Plantas/química , Aceite de Girasol
6.
J Agric Food Chem ; 60(37): 9415-23, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22920386

RESUMEN

Human milk fat substitutes (HMFSs) were prepared by a two-step process, namely, Lipozyme RM IM-catalyzed acidolysis of interesterified high-melting palm stearin with fatty acids from rapeseed oil and blending of the enzymatic product with the selected oils on the basis of the calculation model. The optimum conditions for the enzymatic reaction were a mole ratio of palm stearin/fatty acids 1:10, 60 °C, 8% enzyme load (wt % of substrates), 4 h, and 3.5% water content (wt % of enzyme); the enzymatic product contained 39.6% palmitic acid (PA), 83.7% of the fatty acids at sn-2 position were PA (sn-2 PA), and the distribution probability of PA at the sn-2 position among total PA (% sn-2 PA) was 70.5%. With the fatty acid profiles of human milk fat (HMF) as a preferable goal, a physical blending model was established for the second step to guarantee the maximum addition of selected oils. Based on the model prediction, a desirable formula constituted enzymatic product/rapeseed oil/sunflower oil/palm kernel oil/algal oil/microbial oil at a mole ratio of 1:0.28:0.40:0.36:0.015:0.017, and the final product had PA content, sn-2 PA, and %sn-2 PA at 23.5, 43.1, and 61.1%, respectively. The contents of arachidonic and docosahexaenoic acids were 0.4 and 0.3%, respectively. Relying on the total and sn-2 fatty acid compositions of HMF and "deducting score" principle, the score for the similarity between the final product and HMF was scaled as 89.2, indicating the potential as a fat substitute in infant formulas.


Asunto(s)
Ácido Araquidónico/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Sustitutos de Grasa/síntesis química , Leche Humana/química , Ácido Palmítico/metabolismo , Ácido Araquidónico/química , Ácidos Docosahexaenoicos/química , Sustitutos de Grasa/química , Ácidos Grasos/análisis , Ácidos Grasos Monoinsaturados , Humanos , Lipasa/metabolismo , Aceite de Palma , Ácido Palmítico/química , Pancreatina/metabolismo , Aceites de Plantas/química , Aceite de Brassica napus , Aceite de Girasol , Triglicéridos/química , Triglicéridos/metabolismo
7.
J Agric Food Chem ; 59(11): 6055-63, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21568327

RESUMEN

Human milk fat substitutes (HMFSs) were synthesized by lipozyme RM IM-catalyzed acidolysis of chemically interesterified palm stearin (mp = 58 °C) with mixed FAs from rapeseed oil, sunflower oil, palm kernel oil, stearic acid, and myristic acid in a solvent-free system. Response surface methodology (RSM) was used to model and optimize the reactions, and the factors chosen were reaction time, temperature, substrate molar ratio, and enzyme load. The optimal conditions generated from the models were as follows: reaction time, 3.4 h; temperature, 57 °C; substrate molar ratio, 14.6 mol/mol; and enzyme load, 10.7 wt % (by the weight of total substrates). Under these conditions, the contents of palmitic acid (PA) and PA at sn-2 position (sn-2 PA) were 29.7 and 62.8%, respectively, and other observed FAs were all within the range of FAs of HMF. The product was evaluated by the cited model, and a high score (85.8) was obtained, which indicated a high degree of similarity of the product to HMF.


Asunto(s)
Sustitutos de Grasa/química , Lipasa/química , Leche Humana/química , Aceites de Plantas/química , Triglicéridos/química , Catálisis , Proteínas Fúngicas/química , Humanos , Aceite de Palma , Rhizomucor/enzimología
8.
J Agric Food Chem ; 59(4): 1432-41, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21222456

RESUMEN

Six rectangular block all beef tallow (BT)-based and all palm oil (PO)-based model shortenings prepared on a laboratory scale, respectively denoted BTMS and POMS, were stored under temperature fluctuation cycles of 5-20 °C until granular crystals were observed. The lipid composition and thermal, polymorphic, and isothermal crystallization behaviors of the granular crystals and their surrounding materials separated from BTMS and POMS, respectively, were evaluated. The changes of nanostructure including the aggregation of high-melting triacylglycerols (TAGs) and polymorphic transformation from ß' form of double chain length structures to complicated crystal structures, in which the ß and ß' form crystals of triple and double chain length structures simultaneously coexist, had occurred in granular crystals compared with surrounding materials, whether in BTMS or in POMS. Consequently, a slower crystallization rate appeared in granular crystal parts of both model shortenings noted above, which would yield larger and fewer crystals indicated by the Avrami model analysis that would further aggregate to form large granular crystals.


Asunto(s)
Grasas/química , Calor , Lípidos/análisis , Aceites de Plantas/química , Animales , Cristalización , Cinética , Aceite de Palma , Termodinámica , Triglicéridos/análisis , Triglicéridos/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA