Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(41): 45891-45903, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33012164

RESUMEN

After an osteosarcoma resection, the risks of cancer recurrence, postoperative infection, and large bone loss still threaten patients' health. Conventional treatment relies on implanting orthopedic materials to fill bone defects after surgery, but it has no ability of destroying residual tumor cells and preventing bacterial invasion. To tackle this challenge, here, we develop a novel multifunctional implant (SP@MX/GelMA) that mainly consists of MXene nanosheets, gelatin methacrylate (GelMA) hydrogels, and bioinert sulfonated polyetheretherketone (SP) with the purpose of facilitating tumor cell death, combating pathogenic bacteria, and promoting osteogenicity. Because of the synergistic photothermal effects of MXene and polydopamine (pDA), osteosarcoma cells are effectively killed on the multifunctional coatings under 808 nm near-infrared (NIR) irradiation through thermal ablation. After loading tobramycin (TOB), the SP@MX-TOB/GelMA implants display robust antibacterial properties against Gram-negative/Gram-positive bacteria. More importantly, the multifunctional implants are demonstrated to have superior cytocompatibility and osteogenesis-promoting capability in terms of cell replication, spreading, alkaline phosphatase activity, calcium matrix mineralization, and in vivo osseointegration. Accordingly, such photothermally controlled multifunctional implants not only defeat osteosarcoma cells and bacteria but also intensify osteogenicity, which hold a greatly promising countermeasure for curing postoperative tissue lesion from an osteosarcoma excision.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Hidrogeles/farmacología , Cetonas/farmacología , Osteosarcoma/tratamiento farmacológico , Polietilenglicoles/farmacología , Células 3T3 , Animales , Antibacterianos/química , Antineoplásicos/química , Benzofenonas , Neoplasias Óseas/patología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Hidrogeles/química , Cetonas/química , Ratones , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Osteogénesis/efectos de los fármacos , Osteosarcoma/patología , Tamaño de la Partícula , Terapia Fototérmica , Polietilenglicoles/química , Polímeros , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie
2.
Mater Sci Eng C Mater Biol Appl ; 116: 111212, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806324

RESUMEN

Two-dimensional (2D) MXene nanomaterials have explored as a great potential candidate for tumor therapy during recent decades, especially for photothermal therapeutic applications. However, MXene-based drug-carriers cannot be elaborately controlled in cancer therapy. To solve the problem, a heterostructured titanium carbide-cobalt nanowires (Ti3C2-CoNWs) nanocarrier is developed for synergetic anticancer with magnetic controlling ability, dual stimuli-responsive drug release, and chemo-photothermal therapy. The structure, drug loading/release behavior, magnetic controlling capacity, photothermal performance, and synergistic therapeutic efficiency of the Ti3C2-CoNWs nanocarrier heterojunction are investigated. The heterostructured Ti3C2-CoNWs nanocarrier exhibits excellent photothermal conversion efficiency under 808 nm laser irradiation and high drug loading ability (225.05%). The doxorubicin (DOX) release behavior can be triggered by acid pH value (4-6) or near-infrared (NIR) irradiation. The Ti3C2-CoNWs nanocarrier heterojunction with synergistic chemo-photothermal therapeutic effect exhibits strong lethality for cancer cells than that of chemotherapy or photothermal therapy (PTT) alone. Therefore, Ti3C2-CoNWs nanocarrier heterojunction will be a promising choice for improving the efficiency of cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Nanocables , Línea Celular Tumoral , Cobalto , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Fototerapia , Terapia Fototérmica
3.
Colloids Surf B Biointerfaces ; 194: 111217, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32622255

RESUMEN

In order to improve the anticancer therapeutic efficacy and postoperative recovery efficacy, the novel anticancer therapeutic system should have the ability to promote angiogenesis after anticancer therapy besides the excellent anticancer therapeutic efficacy. We present herein a magnetic targeting multifunctional anticancer therapeutic system based on cobalt nanowires (CoNWs) for anticancer therapy and angiogenesis. Magnetic characterization shows that the CoNWs can be concentrated in desired locations under the external magnetic field, which is favorable for anticancer target therapy. Besides, drug loading/release characterization reveals that the CoNWs interact with doxorubicin (DOX) by electrostatic interaction, and accordingly form a composite which can release DOX with temperature increase under near-infrared light (NIR) treatment. And anticancer test reveals that the nanowires loaded with the DOX (CoNWs-DOX) can produce an effective chemo-photothermal synergistic therapeutic effect against murine breast cancer cell lines (4T1) and human osteosarcoma cell lines (MG63) under NIR treatment. Furthermore, angiogenesis assessment reveals that the released cobalt ion from the nanowires can significantly enhance the angiogenesis efficacy after cancer treatment. These results suggest that the constructed anticancer therapeutic system provides a promising multifunctional platform for cancer treatment and postoperative recovery.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Nanocables , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Cobalto , Doxorrubicina/farmacología , Humanos , Rayos Infrarrojos , Ratones , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA