Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958955

RESUMEN

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an accurate method for quantifying gene expression levels. Choosing appropriate reference genes to normalize the data is essential for reducing errors. Gelsemium elegans is a highly poisonous but important medicinal plant used for analgesic and anti-swelling purposes. Gelsenicine is one of the vital active ingredients, and its biosynthesis pathway remains to be determined. In this study, G. elegans leaf tissue with and without the application of one of four hormones (SA, MeJA, ETH, and ABA) known to affect gelsenicine synthesis, was analyzed using ten candidate reference genes. The gene stability was evaluated using GeNorm, NormFinder, BestKeeper, ∆CT, and RefFinder. The results showed that the optimal stable reference genes varied among the different treatments and that at least two reference genes were required for accurate quantification. The expression patterns of 15 genes related to the gelsenicine upstream biosynthesis pathway was determined by RT-qPCR using the relevant reference genes identified. Three genes 8-HGO, LAMT, and STR, were found to have a strong correlation with the amount of gelsenicine measured in the different samples. This research is the first study to examine the reference genes of G. elegans under different hormone treatments and will be useful for future molecular analyses of this medically important plant species.


Asunto(s)
Gelsemium , Gelsemium/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Perfilación de la Expresión Génica/métodos , Estándares de Referencia , Expresión Génica , Hormonas
2.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894624

RESUMEN

Ampelopsis grossedentata (AG) is mainly distributed in Chinese provinces and areas south of the Yangtze River Basin. It is mostly concentrated or scattered in mountainous bushes or woods with high humidity. Approximately 57 chemical components of AG have been identified, including flavonoids, phenols, steroids and terpenoids, volatile components, and other chemical components. In vitro studies have shown that the flavone of AG has therapeutic properties such as anti-bacteria, anti-inflammation, anti-oxidation, enhancing immunity, regulating glucose and lipid metabolism, being hepatoprotective, and being anti-tumor with no toxicity. Through searching and combing the related literature, this paper comprehensively and systematically summarizes the research progress of AG, including morphology, traditional and modern uses, chemical composition and structure, and pharmacological and toxicological effects, with a view to providing references for AG-related research.


Asunto(s)
Ampelopsis , Medicamentos Herbarios Chinos , Plantas Medicinales , Ampelopsis/química , Medicamentos Herbarios Chinos/química , Flavonoides/farmacología , Flavonoides/química , Glucosa , Fitoquímicos/farmacología , Etnofarmacología , Extractos Vegetales/química
3.
Metabolites ; 13(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36837814

RESUMEN

Gelsemium is a medicinal plant that has been used to treat various diseases, but it is also well-known for its high toxicity. Complex alkaloids are considered the main poisonous components in Gelsemium. However, the toxic mechanism of Gelsemium remains ambiguous. In this work, network pharmacology and experimental verification were combined to systematically explore the specific mechanism of Gelsemium toxicity. The alkaloid compounds and candidate targets of Gelsemium, as well as related targets of excitotoxicity, were collected from public databases. The crucial targets were determined by constructing a protein-protein interaction (PPI) network. Subsequently, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the bioprocesses and signaling pathways involved in the excitotoxicity corresponding to alkaloids in Gelsemium. Then, the binding affinity between the main poisonous alkaloids and key targets was verified by molecular docking. Finally, animal experiments were conducted to further evaluate the potential mechanisms of Gelsemium toxicity. A total of 85 alkaloids in Gelsemium associated with 214 excitotoxicity-related targets were predicted by network pharmacology. Functional analysis showed that the toxicity of Gelsemium was mainly related to the protein phosphorylation reaction and plasma membrane function. There were also 164 pathways involved in the toxic mechanism, such as the calcium signaling pathway and MAPK signaling pathway. Molecular docking showed that alkaloids have high affinity with core targets, including MAPK3, SRC, MAPK1, NMDAR2B and NMDAR2A. In addition, the difference of binding affinity may be the basis of toxicity differences among different alkaloids. Humantenirine showed significant sex differences, and the LD50 values of female and male mice were 0.071 mg·kg-1 and 0.149 mg·kg-1, respectively. Furthermore, we found that N-methyl-D-aspartic acid (NMDA), a specific NMDA receptor agonist, could significantly increase the survival rate of acute humantenirine-poisoned mice. The results also show that humantenirine could upregulate the phosphorylation level of MAPK3/1 and decrease ATP content and mitochondrial membrane potential in hippocampal tissue, while NMDA could rescue humantenirine-induced excitotoxicity by restoring the function of mitochondria. This study revealed the toxic components and potential toxic mechanism of Gelsemium. These findings provide a theoretical basis for further study of the toxic mechanism of Gelsemium and potential therapeutic strategies for Gelsemium poisoning.

4.
Molecules ; 27(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458803

RESUMEN

Gelsemium elegans (Gardn. & Champ.) Benth is a toxic flowering plant in the family Loganiaceae used to treat skin diseases, neuralgia and acute pain. The high toxicity of G. elegans restricts its development and clinical applications, but in veterinary applications, G. elegans has been fed to pigs as a feed additive without poisoning. However, until now, the in vivo processes of the multiple components of G. elegans have not been studied. This study investigates the excretion, metabolism and tissue distribution of the multiple components of G. elegans after feeding it to pigs in medicated feed. Pigs were fed 2% G. elegans powder in feed for 45 days. The plasma, urine, bile, feces and tissues (heart, liver, lung, spleen, brain, spinal cord, adrenal gland, testis, thigh muscle, abdominal muscle and back muscle) were collected 6 h after the last feeding and analyzed using high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Five natural products in plasma, twelve natural products and five metabolites in urine, and three natural products in feces were characterized, suggesting that multiple components from G. elegans were excreted in the urine. However, ten natural products and four metabolites were detected in bile samples, which suggested that G. elegans is involved in enterohepatic circulation in pigs. A total of seven of these metabolites were characterized, and four metabolites were glucuronidated metabolites. Ten natural products and six metabolites were detected in the tissues, which indicates that G. elegans is widely distributed in tissues and can cross the blood-brain barrier. Among the characterized compounds, a highly toxic gelsedine-type alkaloid from G. elegans was the main compound detected in all biological samples. This is the first study of the excretion, metabolism and tissue distribution of multiple components from G. elegans in pigs. These data can provide an important reference to explain the efficacy and toxicity of G. elegans. Additionally, the results of the tissue distribution of G. elegans are of great value for further residue depletion studies and safety evaluations of products of animals fed G. elegans.


Asunto(s)
Alcaloides , Gelsemium , Alcaloides/química , Animales , Cromatografía Líquida de Alta Presión , Gelsemium/química , Masculino , Extractos Vegetales , Porcinos , Distribución Tisular
5.
Xenobiotica ; 52(1): 46-53, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35227161

RESUMEN

Macleaya cordata extracts (MCE) are listed as feed additives in animal production by the European Food Authority. The core components of MCE are mainly sanguinarine (SA) and chelerythrine (CHE). This study aims to investigate sex differences in the pharmacokinetics and tissue residues of MCE in rats.Male and female rates were intragastrically administered MCE (1.25 mg·kg-1 body weight and 12.5 mg·kg-1 body weight dose for 28 days). SA and CHE concentrations were determined using high-performance liquid chromatography/tandem mass spectrometry.The peak plasma concentration (Cmax) and area under the curve (AUC) of both CHE and SA were higher in female than in male rats (12.5 mg·kg-1 body weight group), whereas their half-life (T1/2) and apparent volume of distribution (Vd) was lower (p < 0.05). Tissue rfesidue analysis indicated that SA and CHE were more distributed in male than in female rats and were highly distributed in the caecum and liver. SA and CHE were completely eliminated from the liver, kidney, lung, heart, spleen, leg muscle, and caecum after 120 h, indicating they did not accumulate in rats for a long time.Overall, we found that the pharmacokinetics and tissue residues of SA and CHE of male and female rats showed sex differences.


Asunto(s)
Papaveraceae , Caracteres Sexuales , Animales , Cromatografía Líquida de Alta Presión , Femenino , Masculino , Espectrometría de Masas , Papaveraceae/química , Extractos Vegetales , Ratas
6.
Hum Exp Toxicol ; 41: 9603271211062857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35018838

RESUMEN

BACKGROUND: Gelsenicine, one of the most toxic alkaloids of Gelsemium elegans Benth (G. elegans), causes severe respiratory depression. However, its toxicity mechanisms are yet to be elucidated and no effective antidotes are available. OBJECTIVE: This study aimed to analyse the toxicity characteristics of gelsenicine. METHODS: Both acute and sub-acute toxicities were evaluated. Gelsenicine distribution and elimination in the central nervous system (CNS) and blood were observed. Effective antidotes for gelsenicine poisoning were screened. RESULTS: In the acute toxicity study, gelsenicine was highly toxic, and female rats exhibited greater sensitivity to gelsenicine than male rats (LD50 0.520 mg/kg vs 0.996 mg/kg, respectively). Death was primarily caused by respiratory failure. However, in the sub-acute toxicity study, no significant organ damage was observed. Gelsenicine was easily absorbed from the gastrointestinal tract and penetrated the blood-brain barrier, reaching peak concentrations in the CNS within 15 min and rapidly decreasing thereafter. Flumazenil or diazepam combined with epinephrine reversed gelsenicine toxicity and significantly improved survival rate in mice. CONCLUSIONS: Gelsenicine is a highly toxic substance that affects nerve conduction without causing damage; the potential toxic mechanism is possibly associated with GABAA receptors. Our findings provide insights into the clinical treatment of gelsenicine-related poisoning and its toxicity mechanisms.


Asunto(s)
Antídotos/uso terapéutico , Gelsemium/química , Alcaloides Indólicos/toxicidad , Neurotoxinas/toxicidad , Extractos Vegetales/toxicidad , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Insuficiencia Respiratoria/mortalidad , Factores Sexuales
7.
Front Vet Sci ; 9: 1111782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713860

RESUMEN

Introduction: Gelsemium elegans (G. elegans) as a traditional medicinal plant used in livestock production. The use of G. elegans in veterinary clinics may pose safety risks to human health. Objectives: The aim of this study was to investigate tissue residue depletion in pigs fed G. elegans powder. Methods: A precise quantitation method and a simultaneous semi-quantitation method for multiple components independently of standards in pig tissues were developed for the first time. The two methods were validated in terms of specificity, LODs, LOQs, linearity, accuracy, precision, and matrix effects. They were then applied to a tissue residue depletion study after G. elegans powder at a dose of 2% per kg feed were fed to pigs. Results: Compared with precise quantitation, the method validation results indicated that the semi-quantitation method was reliable and acceptable for multicomponent quantification independent of standards. Many G. elegans alkaloids are widely distributed in most tissues of pigs. Tissue residue depletion studies indicated that 14-hydroxygelsenicine, 11-hydroxygelsenicine, and gelsemoxonine could be used as potential residue markers, and pancreas, small intestine, and lung tissues could be considered as potential residue target tissues of G. elegans. In addition, both urine and plasma could be used to predict 14-hydroxygelsenicine and gelsemoxonine residues in the liver, pancreas, and small intestinal tissues of pigs. Conclusion: The developed semi-quantification method can be applied to monitor the application and residue of G. elegans. The results provide scientific evidence for evaluating the safety of animal-derived food from G. elegans for consumers and will be helpful for its application and future development.

8.
Curr Mol Pharmacol ; 15(5): 794-801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34886788

RESUMEN

BACKGROUND: Gelsemium elegans (G. elegans) has been shown to have strong pharmacological and pharmacodynamic effects in relevant studies both in China and USA. G. elegans has been used as a traditional medicine to treat a variety of diseases and even has the potential to be an alternative to laboratory synthesized drugs. However, its toxicity severely limited its application and development. At present, there is little attention paid to protein changes in toxicity. AIM: This study investigated the toxicity effects after long-term exposure of G. elegans of the rat brain through proteomic. METHODS: 11 differential abundance proteins were detected, among which 8 proteins were higher in the G. elegans- exposure group than in the control group, including Ig-like domain-containing protein (N/A), receptor-type tyrosine-protein phosphatase C (Ptprc), disheveled segment polarity protein 3 (Dvl3), trafficking protein particle complex 12 (Trappc12), seizure-related 6 homologlike (Sez6l), transmembrane 9 superfamily member 4 (Tm9sf4), DENN domain-containing protein 5A (Dennd5a) and Tle4, whereas the other 3 proteins do the opposite including Golgi to ER traffic protein 4 (Get4), vacuolar protein sorting 4 homolog B (Vps4b) and cadherin-related 23 (CDH23). Furthermore, we performed validation of WB analysis on the key protein CDH23. RESULTS: Finally, only fewer proteins and related metabolic pathways were affected, indicating that there was no accumulative toxicity of G. elegans. G. elegans has the potential to develop and utilize of its pharmacological activity. CHD23, however, is a protein associated with hearing. CONCLUSION: Whether the hearing impairment is a sequela after G. elegans exposure remains to be further studied.


Asunto(s)
Gelsemium , Animales , Encéfalo , Proteómica , Ratas
9.
Vet Med Sci ; 7(5): 2086-2092, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33955684

RESUMEN

Gelsemium is a small genus of flowering plants from the family Loganiaceae comprising five species, three of which, Gelsemium sempervirens (L.) J. St.-Hil., G. elegans Benth and G. rankinii Small, are particularly popular. Compared with other alkaloids from G. elegans, gelsemine, gelsevirine and koumine exhibit equally potent anxiolytic effects and low toxicity. Although the pharmacological activities and metabolism of koumine and gelsemine have been reported in previous studies, the species differences of gelsevirine metabolism have not been well studied. In this study, the metabolism of gelsevirine was investigated by using liver microsomes of humans, pigs, goats and rats by means of HPLC-QqTOF/MS. The results indicated that the metabolism of gelsevirine in liver microsomes had qualitative and quantitative species differences. Based on the results, the possible metabolic pathways of gelsevirine in liver microsomes were proposed. Investigation of the metabolism of gelsevirine will provide a basis for further studies of the in vivo metabolism of this drug.


Asunto(s)
Gelsemium , Microsomas Hepáticos , Animales , Cromatografía Líquida de Alta Presión/veterinaria , Gelsemium/metabolismo , Cabras/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Extractos Vegetales/metabolismo , Ratas , Porcinos
10.
Animals (Basel) ; 11(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919302

RESUMEN

Some naturalphytogenic feed additives, which contain several active compounds, have been shown to be effective alternatives to traditional antibiotics. Gelsemium elegans (G. elegans) is a whole grass in the family Loganiaceae. It is a known toxic plant widely distributed in China and has been used as a traditional Chinese herbal medicine for many years to treat neuropathic pain, rheumatoid pain, inflammation, skin ulcers, and cancer. However, G. elegans not only is nontoxic to animals such as pigs and sheep but also has an obvious growth-promoting effect. To our knowledge, the internal mechanism of the influence of G. elegans on the animal body is still unclear. The goal of this work is to evaluate the metabolic consequences of feeding piglets G. elegans for 45 days based on the combination of transcriptomics and metabolomics. According to growth measurement and evaluation, compared with piglets fed a complete diet, adding 20 g/kg G. elegans powder to the basal diet of piglets significantly reduced the feed conversion ratio. Results of the liver transcriptome suggest that glycine and cysteine-related regulatory pathways, including the MAPK signaling pathway and the mTOR signaling pathway, were extensively altered in G. elegans-induced piglets. Plasma metabolomics identified 21 and 18 differential metabolites (p < 0.05) in the plasma of piglets in the positive and negative ion modes, respectively, between G. elegans exposure and complete diet groups. The concentrations of glycine and its derivatives and N-acetylcysteine were higher in the G. elegans exposure group than in the complete diet group.This study demonstrated that G. elegans could be an alternative to antibiotics that improves the immune function of piglets, and the latent mechanism of G. elegans may be related to various signaling pathways, including the MAPK signaling pathway and the PPAR signaling pathway.

11.
Biomed Pharmacother ; 137: 111284, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33561641

RESUMEN

BACKGROUND: Gelsemium elegans (G. elegans) is a flowering plant of the Loganiaceae family, which had been used in traditional Chinese herb medicine for many years for the treatment of rheumatoid pain, neuropathic pain, spasticity, skin ulcers, anxiety and cancer. Acute toxicity of the plant severely limits the application and development of G. elegans; however, long-term toxicity of exposure to G. elegans has not been illuminated. PURPOSE: This study is a comprehensive observation of the effects of long-term exposure (21 days at 70 mg/kg) to G. elegans in rats. METHODS AND RESULTS: The histopathological examination showed only a mild glial cell proliferation in the brain, and no lesions were observed in other organs. No abnormal changes in the biochemical parameters were observed that would have significant effects. The identification and analysis of absorbed natural ingredients showed that the active ingredients of the G. elegans could distribute to various tissues, and six compounds were identified in the brain, suggesting that they could cross the blood-brain barrier. Based on the intestinal content metabolomics, the tryptophan (Trp) biosynthesis, bile acid synthesis and bile secretion pathways have attracted our attention. Plasma metabolomic results showed that uric acid (UA) was significantly increased. The results of the brain metabolomic tests showed that the level of pyridoxal (PL) was decreased; considering the expression levels of the related enzymes, it was hypothesized that the level of pyridoxal 5'-phosphate (PLP) was decreased. PLP was important for the regulation of the neuronal γ-aminobutyric acid (GABA)/glutamate (Glu) interconversion and therefore neuronal excitability. The data of the study suggested that toxic reaction caused by G. elegans was due to a disruption of the balance of the neurotransmitter GABA/Glu transformation. CONCLUSIONS: Overall, G. elegans did not cause significant toxic reaction in the rats after long-term exposure. The results were significant for the future clinical applications of G. elegans and suggested that G. elegans could be potentially developed as a drug. The study provided a scientific basis for investigation of the mechanisms of toxicity and detoxification.


Asunto(s)
Encéfalo/efectos de los fármacos , Gelsemium/toxicidad , Neuroglía/efectos de los fármacos , Extractos Vegetales/toxicidad , Pruebas de Toxicidad Crónica , Administración Oral , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proliferación Celular/efectos de los fármacos , Ácido Glutámico/metabolismo , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Neuroglía/metabolismo , Neuroglía/patología , Extractos Vegetales/administración & dosificación , Ratas Sprague-Dawley , Medición de Riesgo , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
12.
Chin Herb Med ; 13(1): 17-32, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36117759

RESUMEN

Objective: To develop a powerful integrated strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) systems for the comprehensive characterization and quantification of multiple components of herbal medicines. Methods: Firstly, different mobile phase additives, analysis time, and MS acquisition modes were orthogonally tested with liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in order to detect as many components of Gelsemium elegans as possible with high peak intensity. Secondly, several data mining strategies, including database searching, diagnostic ion filtering and neutral loss filtering, were utilized to perform chemical profiling. Subsequently, this study focused on the quantification and validation of the performance of a liquid chromatography-triple mass spectrometry (LC-QqQ/MS) assay based on derivative multiple reaction monitoring (DeMRM). Results: A total of 147 components from G. elegans were characterized, among them 116 nontarget components were reported for the first time. A sensitive and reproducible LC-QqQ/MS method was successfully developed and validated for the simultaneous relative quantification of 41 components of G. elegans. This LC-QqQ/MS method was then applied to compare the contents of components in the roots, stems and leaves. Conclusion: The present integrated strategy would significantly contribute to chemical studies on herbal medicine, and its utility could be extended to other research fields, such as metabolomics, quality control, and pharmacokinetics.

13.
Biol Trace Elem Res ; 199(4): 1259-1267, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32583224

RESUMEN

Pulmonary tuberculosis (TB) is a well-known cause of imbalance in oxidative stress (OS) status and trace element levels. However, little information is available for targeting the correlation between OS and trace elements in pulmonary TB patients. The aim of our study was to analyze the OS status and its correlation with trace elements in patients initially and during 6 months anti-TB treatment. Eighty-six newly diagnosed pulmonary TB patients were consecutively recruited, and 112 age- and sex-matched healthy controls participated in the study. Serum markers of OS and trace elements levels were tested and analyzed in all subjects during 6 months anti-TB treatment. Compared with healthy controls, significantly increased level of malondialdehyde (MDA), decreased glutathione (GSH) level, superoxide dismutase (SOD), and catalase (CAT) activities were found in TB patients. The activities of SOD and CAT and GSH level recovered till normal range at treatment final. Zinc (Zn), selenium (Se), and copper (Cu) concentrations were significantly lower in TB patients in comparison with healthy controls, whereas Zn, Cu, and Se concentrations rise during 6 months anti-TB treatment. Zn was positively correlated with Cu, Se, and GSH, while MDA was negatively correlated with Zn, Se, SOD, and CAT, and SOD was positively correlated with Cu, Zn, and CAT. Our findings indicate that anti-TB treatment could reduce the status of OS and increase the levels of trace elements. The routine assessment of OS markers and element traces may guarantee improved monitoring the anti-TB treatment.


Asunto(s)
Antituberculosos , Estrés Oxidativo , Selenio , Oligoelementos , Tuberculosis Pulmonar , Antituberculosos/uso terapéutico , Cobre , Humanos , Superóxido Dismutasa/metabolismo , Tuberculosis Pulmonar/tratamiento farmacológico , Zinc
14.
Biomed Chromatogr ; 34(9): e4872, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32358897

RESUMEN

Xuefu Zhuyu Decoction (XFZYD) is a traditional Chinese medicine prescription used for the clinical treatment of traumatic brain injury (TBI). The purpose of this work was to develop a sensitive and rapid UHPLC-MS/MS method to simultaneously study the pharmacokinetics of nimodipine and eight components of XFZYD, namely, amygdalin, hydroxysafflor yellow A, rutin, liquiritin, narirutin, naringin, neohesperidin and saikosaponin A, in rats with and without TBI. Multiple reaction monitoring was highly selective in the detection of nine analytes and the internal standard without obvious interference. The calibration curves displayed good linearity (r > 0.99) over a wide concentration range. The mean absolute recoveries of the nine analytes were 85-106%, and all matrix effects were in the range 80-120%. The intra- and inter-day precision and accuracy were acceptable (RSD, <15%; RE%, ±20%). The validated method was successfully applied to compare the pharmacokinetics in four experimental groups, including control rats orally administered XFZYD and TBI model rats orally administered XFZYD, XFZYD and nimodipine, or nimodipine alone. The results showed that herb-drug interactions occurred between XFZYD and nimodipine in the treatment of TBI, nimodipine affected the pharmacokinetics of XFZYD, and XFZYD affected the absorption, distribution and excretion of nimodipine in vivo.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Nimodipina , Espectrometría de Masas en Tándem/métodos , Administración Oral , Animales , Lesiones Traumáticas del Encéfalo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacocinética , Flavonoides/sangre , Flavonoides/química , Flavonoides/farmacocinética , Glicósidos/sangre , Glicósidos/química , Glicósidos/farmacocinética , Modelos Lineales , Masculino , Nimodipina/administración & dosificación , Nimodipina/sangre , Nimodipina/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Toxicon ; 181: 28-35, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32335100

RESUMEN

Gelsemium elegans Benth (G. elegans) is highly toxic to humans and rats, but has insecticides and growth promoting effects on pigs and goats. G. elegans is widely used in livestock, but its in vivo dynamics are entirely unknown. Hence, we investigated the toxicokinetic profiles of G. elegans alkaloids after a single oral dose of G. elegans to pigs (1.0 g/kg) and rats (0.1 g/kg). The results indicated that rats were more susceptible to the toxicity of G. elegans than pigs. The toxicokinetic parameters of 22 and 6 components were obtained in pigs and rats, respectively. The components included 9 and 5 gelsedine-type alkaloids in pigs and rats, respectively. The Tmax results of the 5 gelsedine-type alkaloids indicated that these alkaloids were rapidly absorbed in pigs and rats. The T1/2 values of the 5 gelsedine-type alkaloids indicated that the elimination rates of these alkaloids in pigs were slower than those in rats. In addition, the Cmax and AUC results indicated that the degrees of absorption and exposure of most alkaloids in pigs were higher than those in rats except GS-2. However, the Cmax value of GS-2 (11-methoxy-14-hydroxygelsenicine) in rats was greater than that of pigs, and the Cmax value of 14-hydroxygelsenicine in pigs was merely greater than 3 times that of rats. The present results suggested that the cause of the toxicological differences species of G. elegans might be related to the degrees of absorption and exposure of gelsedine-type alkaloids, especially for the 14-hydroxygelsenicine and GS-2 in different animals.


Asunto(s)
Gelsemium , Extractos Vegetales/toxicidad , Animales , Humanos , Extractos Vegetales/administración & dosificación , Ratas , Porcinos , Toxicocinética
16.
J Ethnopharmacol ; 257: 112677, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278761

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Albizia (Leguminosae) comprises about 150 species and some species have been used for the treatment of rheumatism, stomachache, cough, diarrhea, and wounds in traditional and local medicine. The aim of the review: This review article documents and critically assesses the current status of the traditional uses, phytochemistry, pharmacology, and toxicology of the Albizia species. MATERIALS AND METHODS: All provided literatures on the Albizia species were searched using the electronic databases (e.g. Web of Science, Elsevier, Springer, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), books, and theses with keywords of 'Albizia' and 'Albizzia'. RESULTS: Albizia species have been used for melancholia, insomnia, wounds, fever, abscesses, diabetes, headache, stomachache, diarrhea, cough, rheumatism, snake bite, malaria, and parasitic infection in traditional and local medicine. These plants mainly contain triterpenoid saponins, flavonoids, lignanoids, alkaloids, phenolic glycosides, etc. Albizia species have been demonstrated to possess various pharmacological activities. Among them, the antidiabetic, anti-inflammatory, antifertility, antianxiety, antidepressant, and anti-fever properties are consistent with the traditional and local applications of the Albizia species. CONCLUSIONS: The traditional and local uses of Albizia species have been partially demonstrated by the pharmacological investigation. However, some traditional applications have not been assessed scientifically due to incomplete methodologies and ambiguous findings. Moreover, no clinical evidences support the health benefits of these plants. The systematic and comprehensive preclinical studies and clinical trials are still required to verify the pharmacological activities, clinical efficacy, and safety of Albizia species.


Asunto(s)
Albizzia/química , Albizzia/toxicidad , Etnofarmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Humanos , Fitoterapia , Plantas Medicinales
17.
Acta Pharm Sin B ; 10(2): 374-382, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32082980

RESUMEN

BACKGROUND: Gelsemium elegans (G. elegans) (2n = 2x = 16) is genus of flowering plants belonging to the Gelsemicaeae family. METHOD: Here, a high-quality genome assembly using the Oxford Nanopore Technologies (ONT) platform and high-throughput chromosome conformation capture techniques (Hi-C) were used. RESULTS: A total of 56.11 Gb of raw GridION X5 platform ONT reads (6.23 Gb per cell) were generated. After filtering, 53.45 Gb of clean reads were obtained, giving 160 × coverage depth. The de novo genome assemblies 335.13 Mb, close to the 338 Mb estimated by k-mer analysis, was generated with contig N50 of 10.23 Mb. The vast majority (99.2%) of the G. elegans assembled sequence was anchored onto 8 pseudo-chromosomes. The genome completeness was then evaluated and 1338 of the 1440 conserved genes (92.9%) could be found in the assembly. Genome annotation revealed that 43.16% of the G. elegans genome is composed of repetitive elements and 23.9% is composed of long terminal repeat elements. We predicted 26,768 protein-coding genes, of which 84.56% were functionally annotated. CONCLUSION: The genomic sequences of G. elegans could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.

18.
Am J Chin Med ; 48(1): 127-142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31931594

RESUMEN

Gelsemium elegans Benth. (G. elegans), a traditional Chinese medicine, has great potential as an effective growth promoter in animals, however, the mechanism of its actin remains unclear. Here, we evaluated the protective effects of koumine extract from G. elegans against lipopolysaccharide (LPS)-induced intestinal barrier dysfunction in IPEC-J2 cells through alleviation of inflammation and oxidative stress. MTT and LDH assays revealed that koumine significantly reduced LPS cytotoxicity. Transepithelial electrical resistance (TEER) and cell monolayer permeability assays showed that koumine treatment attenuated the LPS-induced intestinal barrier dysfunction with no particularly different effects in tight junction proteins such as ZO-1, claudin-1, and occludin. LPS-triggered inflammatory response was also suppressed by koumine, as evidenced by the downregulated inflammatory factors, including TNF-α, IL-6, IL-1ß, NO, iNOS, and COX-2, which was closely connected with the inhibition of NF-κB pathway for the decrease of phosphorylation of IκBα and NF-κB and nuclear translocation of p-p65. Amount of reactive oxygen species (ROS) and MDA induced by LPS was also reduced by koumine through activation of Nrf2 pathway, and increased in the levels of Nrf2 and HO-1 degradation of keap-1 to promote anti-oxidants, including superoxide dismutase (SOD) and catalase (CAT). To summarize, koumine-reduced the oxidative stress and inflammatory reaction triggered by LPS through regulation of the Nrf2/NF-κB signaling pathway and preventing intestinal barrier dysfunction.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Gelsemium/química , Alcaloides Indólicos/farmacología , Mucosa Intestinal/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Mucosa Intestinal/patología , Lipopolisacáridos , Medicina Tradicional China
19.
J Ethnopharmacol ; 252: 112617, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31988014

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal medicine contains hundreds of natural products, and studying their absorption, metabolism, distribution, and elimination presents great challenges. Gelsemium elegans (G. elegans) is a flowering plants in the Loganiaceae family. The plant is known to be toxic and has been used for many years as a traditional Chinese herbal medicine for the treatment of rheumatoid arthritis, neuropathic pain, spasticity, skin ulcers and cancer. It was also used as veterinary drugs for deworming, promoting animal growth, and pesticides. At present, studies on the metabolism of G. elegans have primarily focused on only a few single available reference ingredients, such as koumine, gelsemine and gelsedine. MATERIAL AND METHODS: The goal of this work is to elucidate the overall metabolism of whole G. elegans powder in goats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS). RESULTS: Analyses of plasma, urine and fecal samples identified or tentatively characterized a total of 44 absorbed natural products and 27 related produced metabolites. Gelsedine-type, sarpagine-type and gelsemine-type alkaloids were the compounds with the highest metabolite formation. In the present study, most natural products identified in G. elegans were metabolized through glucuronidation and oxidation. Hydrogenation, dehydrogenation and demethylation also occurred. CONCLUSION: To our knowledge, this is the first report of the metabolite profiling of the G. elegans crude extract in goats, which is of great significance for a safer and more rational application of this herbal medicine.


Asunto(s)
Gelsemium , Extractos Vegetales/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Heces/química , Cabras , Absorción Intestinal , Masculino , Espectrometría de Masas , Medicina Tradicional China , Extractos Vegetales/sangre , Extractos Vegetales/orina
20.
J Anal Toxicol ; 44(4): 378-390, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31993639

RESUMEN

Gelsemium elegans (G. elegans) has been used in traditional Chinese medicine. This plant is highly toxic to humans, but can promote the growth of pigs and goats in the veterinary clinic. It is a very complex mixture containing tens or hundreds of different components. Therefore, multiple-component pharmacokinetic studies of G. elegans are a major challenge due to the lack of authentic standards of the components. The purpose of this study was to investigate the plasma pharmacokinetics of multiple components after a single oral dose of G. elegans in goat using a sensitive ultra-performance liquid chromatography coupled to tandem mass spectrometry method for the simultaneous semiquantification of multiple alkaloids without standards. The method was validated in terms of the specificity, LOD, LOQ, linearity, accuracy, precision and matrix effects. To validate the global pharmacokinetic characteristics, the results obtained from the semiquantitative analysis of three authentic compounds (gelsemine, koumine and humantenmine) were compared with the absolute quantification from our recently published method. The results showed that the two methods had similar analytical results, and the obtained values of Tmax, T1/2 and MRT0-t of the three alkaloids were similar between the two methods. In addition, the values of Cmax and AUC0-t of the three alkaloids after normalization were close to the real values, which indicated that this semiquantitative method could be used in the pharmacokinetic study of multiplecomponents. Then the pharmacokinetic parameters of 23 other G. elegans alkaloids in goats were obtained. The results suggested that the gelsedine-type alkaloids were the major active ingredients that predict and explain the efficacy and toxicity of G. elegans.


Asunto(s)
Gelsemium , Cabras/metabolismo , Extractos Vegetales/farmacocinética , Alcaloides/farmacocinética , Animales , Cromatografía Liquida , Humanos , Alcaloides Indólicos/farmacocinética , Porcinos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA