Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467717

RESUMEN

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aconitina , Cardiotoxicidad , Histona Desacetilasas , Animales , Ratones , Cardiotoxicidad/metabolismo , Cardiotoxicidad/etiología , Histona Desacetilasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Humanos , Aconitum/química , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Medicamentos Herbarios Chinos/farmacología
2.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330711

RESUMEN

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Asunto(s)
Araceae , FN-kappa B , Animales , Ratones , Ratas , Ratones Endogámicos C57BL , Isoproterenol/toxicidad , Transducción de Señal , Iones , Litio , Artesunato , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
3.
J Ethnopharmacol ; 321: 117483, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008273

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a recurring chronic intestinal disease that can be debilitating and in severe cases, may further lead to cancer. However, all these treatment techniques still suffer from drug dependence, adverse effects and poor patient compliance. Therefore, there is an urgent need to seek new therapeutic strategies. In traditional Chinese medicine, Rabdosia rubescens (Hemsl.) H.Hara has the effects of clearing heat-toxin and promoting blood circulation to relieve pain, it is wildly used for treating inflammatory diseases such as sore throats and tonsillitis. Ponicidin is an important molecule for the anti-inflammatory effects of Rabdosia rubescens, but it has not been studied in the treatment of colitis. HSP90 is the most critical regulator in the development and progression of inflammatory diseases such as UC. AIM OF THE STUDY: The aim of this study was to explore the anti-inflammatory activity of ponicidin and its mechanism of effect in vitro and in vivo, as well as to identify the target proteins on which ponicidin may interact. MATERIAL AND METHODS: 2.5% (w/v) dextran sulfate sodium (DSS) was used to induce C57BL/6 mice to form an ulcerative colitis model, and then 5 mg/kg and 10 mg/kg ponicidin was given for treatment, while the Rabdosia rubescens extract group and Rabdosia rubescens diterpene extract group were set up for comparison of the efficacy of ponicidin. At the end of modeling and drug administration, mouse colon tissues were taken, and the length of colon was counted, inflammatory factors and inflammatory signaling pathways were detected. RAW264.7 cells were induced to form cell inflammation model with 1 µg/mL Lipopolysaccharide (LPS) for 24 h. 1 µM, 2 µM and 4 µM ponicidin were given at the same time, and after the end of the modeling and administration of the drug, the inflammatory factors and inflammatory signaling pathways were detected by qRT-PCR, western blotting, immunofluorescence and other methods. In vitro, target angling and combined with mass spectrometry were used to search for relevant targets of ponicidin, while isothermal titration calorimetry (ITC), protease degradation experiments and molecular dynamics simulations were used for further confirmation of the mode of action and site of action between ponicidin and target proteins. RESULTS: Ponicidin can alleviate DSS and LPS-induced inflammation by inhibiting the MAPK signaling pathway at the cellular and animal levels. In vitro, we confirmed that ponicidin can interact with the middle domain of HSP90 and induce the conformational changes in the N-terminal domain. CONCLUSION: These innovative efforts identified the molecular target of ponicidin in the treatment of UC and revealed the molecular mechanism of its interaction with HSP90.


Asunto(s)
Colitis Ulcerosa , Colitis , Diterpenos , Animales , Ratones , Humanos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Diterpenos/farmacología , Antiinflamatorios/efectos adversos , Inflamación/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Colon , Colitis/tratamiento farmacológico , FN-kappa B/metabolismo
4.
J Ethnopharmacol ; 322: 117576, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Type 1 diabetes mellitus (T1DM) results from insulin deficiency due to the destruction of pancreatic ß-cells. Previously, our studies showed that inhibition of Keap1/Nrf2 signaling pathway promoted the onset of T1DM, which suggests that finding drugs that can activate the Keap1/Nrf2 signaling may be a promising therapeutic strategy for the T1DM treatment. Astragalus membranaceus (Fisch.) Bunge is a common traditional Chinese medicine that has been frequently applied in Chinese clinics for the treatment of diabetes and other diseases. Formononetin (FMNT), one of the major isoflavonoid constituents isolated from this herbal medicine, possesses diverse pharmacological benefits and T1DM therapeutic potential. However, the exact molecular mechanisms underlying the action of FMNT in ameliorating T1DM have yet to be fully elucidated. AIMS OF THE STUDY: This study is to investigate the regulation of FMNT on the Keap1/Nrf2 signaling pathway to ameliorate T1DM based on network pharmacology approach combined with experimental validation. MATERIALS AND METHODS: A mouse-derived pancreatic islet ß-cell line (MIN6) was used for the in vitro studies. An alloxan (ALX)-induced T1DM model in wild-type and Nrf2 knockout (Nrf2-/-) C57BL/6J mice were established for the in vivo experiments. The protective effects of FMNT against ALX-stimulated MIN6 cell injury were evaluated using MTT, EdU, apoptosis and comet assays. The levels of blood glucose in mice were measured by using a blood monitor and test strips. The protein expression was detected by Western blot analysis. Furthermore, the binding affinity of FMNT to Keap1 was evaluated using cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and solvent-induced protein precipitation (SIP) assay. The interaction pattern between FMNT and Keap1 was assessed by molecular docking and molecular dynamics simulation techniques. RESULTS: Network pharmacology analysis revealed that FMNT exerted its therapeutic effect against T1DM by mainly regulating oxidative stress response-associated signaling molecules and pathways, such as Nrf2 regulating anti-oxidant/detoxification enzymes and Keap1-Nrf2 signaling pathway. The in vivo results showed that FMNT significantly deceased the ALX-induced high blood glucose levels and conversely increased the ALX-induced low insulin contents. In vitro, FMNT markedly protected MIN6 cells from ALX-induced cytotoxicity, proliferation inhibition and DNA damage and reduced the ALX-stimulated cell apoptosis. FMNT also inhibited ALX-induced overproduction of intracellular ROS to alleviate oxidative stress. In addition, FMNT could bind to Keap1 to notably activate the Keap1/Nrf2 signaling to upregulate Nrf2 expression and promote the Nrf2 translocation from the cytoplasm to the nucleus, resulting in enhancing the expression of antioxidant proteins HO-1 and NQO1. Inhibition of Keap1/Nrf2 signaling by ALX was also markedly abolished in the cells and mice exposed to FMNT. Moreover, these effects of FMNT in ameliorating T1DM were not observed in Nrf2-/- mice. CONCLUSIONS: This study demonstrates that FMNT could bind to Keap1 to activate the Keap1/Nrf2 signaling to prevent intracellular ROS overproduction, thereby attenuating ALX-induced MIN6 cell injury and ameliorating ALX-stimulated T1DM. Results from this study might provide evidence and new insight into the therapeutic effect of FMNT and indicate that FMNT is a promising candidate agent for the treatment of T1DM in clinics.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Isoflavonas , Ratones , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Astragalus propinquus , Glucemia , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratones Endogámicos C57BL , Estrés Oxidativo , Transducción de Señal , Insulinas/metabolismo , Insulinas/farmacología
5.
Front Pharmacol ; 14: 1274121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026979

RESUMEN

Background: Early life stress (ELS) is a major risk factor for depression in adolescents. The nucleus accumbens (NAc) is a key center of the reward system, and spine remodeling in the NAc contributes to the development of depression. The Si-Ni-San formula (SNS) is a fundamental prescription for treating depression in traditional Chinese medicine. However, little is known about the effects of SNS on behavioral abnormalities and spine plasticity in the NAc induced by ELS. Purpose: This study aimed to investigate the therapeutic effect and the modulatory mechanism of SNS on abnormal behaviors and spine plasticity in the NAc caused by ELS. Methods: We utilized a model of ELS that involved maternal separation with early weaning to explore the protective effects of SNS on adolescent depression. Depressive-like behaviors were evaluated by the sucrose preference test, the tail suspension test, and the forced swimming test; anxiety-like behaviors were monitored by the open field test and the elevated plus maze. A laser scanning confocal microscope was used to analyze dendritic spine remodeling in the NAc. The activity of Rac1 was detected by pull-down and Western blot tests. Viral-mediated gene transfer of Rac1 was used to investigate its role in ELS-induced depression-like behaviors in adolescence. Results: ELS induced depression-like behaviors but not anxiety-like behaviors in adolescent mice, accompanied by an increase in stubby spine density, a decrease in mushroom spine density, and decreased Rac1 activity in the NAc. Overexpression of constitutively active Rac1 in the NAc reversed depression-related behaviors, leading to a decrease in stubby spine density and an increase in mushroom spine density. Moreover, SNS attenuated depression-like behavior in adolescent mice and counteracted the spine abnormalities in the NAc induced by ELS. Additionally, SNS increased NAc Rac1 activity, and the inhibition of Rac1 activity weakened the antidepressant effect of SNS. Conclusion: These results suggest that SNS may exert its antidepressant effects by modulating Rac1 activity and associated spine plasticity in the NAc.

6.
Phytomedicine ; 121: 155114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37816287

RESUMEN

BACKGROUND: Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE: To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS: We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME: After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS: We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1ß, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.


Asunto(s)
Artritis Reumatoide , Morfinanos , Humanos , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Morfinanos/farmacología , Morfinanos/uso terapéutico , Transducción de Señal
7.
Phytomedicine ; 120: 155040, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683587

RESUMEN

BACKGROUND: Irinotecan (CPT-11, Camptosar@) is a first-line drug for metastatic colorectal cancer. CPT-11-induced diarrhea, which is closely related to the concentrations of ß-glucuronidase (ß-GUS) and SN-38 in the gut, largely limits its clinical application. PURPOSE: Herein, Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese formula, was applied to mitigate CPT-11-induced toxicity. This study initially explored the mechanism by which XCHT alleviated diarrhea, especially for ß-GUS from the gut microbiota. METHODS: First, we examined the levels of the proinflammatory cytokines and the anti-inflammatory cytokines in the intestine. Furthermore, we researched the community abundances of the gut microbiota in the CPT-11 and XCHT-treated mice based on 16S rRNA high-throughput sequencing technology. Meanwhile, the level of SN-38 and the concentrations of ß-GUS in intestine were examined. We also resolved the 3D structure of ß-GUS from gut microbiota by X-ray crystallography technology. Moreover, we used virtual screening, SPR analysis, and enzyme activity assays to confirm whether the main active ingredients from XCHT could selectively inhibit ß-GUS. RESULTS: In XCHT-treated mice, the levels of the proinflammatory cytokines decreased, the anti-inflammatory cytokines increased, and the community abundances of beneficial Firmicutes and Bacteroidota improved in the gut microbiota. We also found that the concentrations of ß-GUS and the level of SN-38, the major ingredient that induces diarrhea in the gut, significantly decreased after coadministration of XCHT with CPT-11 in the intestine. Additionally, we revealed the structural differences of ß-GUS from different gut microbiota. Finally, we found that EcGUS had good affinity with baicalein and meanwhile could be selectively inhibited by baicalein from XCHT. CONCLUSIONS: Overall, XCHT could relieve the delayed diarrhea induced by CPT-11 through improving the abundance of beneficial gut microbiota and reduced inflammation. Furthermore, based on the three-dimensional structure, baicalein, especially, could be used as a candidate EcGUS inhibitor to alleviate CPT-11-induced diarrhea.


Asunto(s)
Microbioma Gastrointestinal , Glucuronidasa , Animales , Ratones , Irinotecán , ARN Ribosómico 16S/genética , Citocinas , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico
8.
Synth Syst Biotechnol ; 8(3): 437-444, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37416896

RESUMEN

Cibotium barometz (Linn.) J. Sm., a tree fern in the Dicksoniaceae family, is an economically important industrial exported plant in China and widely used in Traditional Chinese Medicine. C. barometz produces a range of bioactive triterpenes and their metabolites. However, the biosynthetic pathway of triterpenes in C. barometz remains unknown. To clarify the origin of diverse triterpenes in C. barometz, we conducted de novo transcriptome sequencing and analysis of C. barometz rhizomes and leaves to identify the candidate genes involved in C. barometz triterpene biosynthesis. Three C. barometz triterpene synthases (CbTSs) candidate genes were obtained. All of them were highly expressed in C. barometz rhizomes, consisting of the accumulation pattern of triterpenes in C. barometz. To characterize the function of these CbTSs, we constructed a squalene- and oxidosqualene-overproducing yeast chassis by overexpressing all the enzymes in the MVA pathway under the control of GAL-regulated promoter and disrupted the GAL80 gene in Saccharomyces cerevisiae simultaneously. Heterologous expressing CbTS1, CbTS2, and CbTS3 in engineering yeast strain produced cycloartenol, dammaradiene, and diploptene, respectively. Phylogenetic analysis revealed that CbTS1 belongs to oxidosqualene cyclase, while CbTS2 and CbTS3 belong to squalene cyclase. These results decipher enzymatic mechanisms underlying the origin of diverse triterpene in C. barometz.

9.
Phytother Res ; 37(11): 5328-5340, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37500597

RESUMEN

Myocardial infarction (MI) is a common disease with high morbidity and mortality. Curdione is a sesquiterpenoid from Radix Curcumae. The current study is aimed to investigate the protective effect and mechanism of curdione on ferroptosis in MI. Isoproterenol (ISO) was used to induce MI injury in mice and H9c2 cells. Curdione was orally given to mice once daily for 7 days. Echocardiography, biochemical kits, and western blotting were performed on the markers of cardiac ferroptosis. Curdione at 50 and 100 mg/kg significantly alleviated ISO-induced myocardial injury. Curdione and ferrostatin-1 significantly attenuated ISO-induced H9c2 cell injury. Curdione effectively suppressed cardiac ferroptosis, evidenced by decreasing malondialdehyde and iron contents, and increasing glutathione (GSH) level, GSH peroxidase 4 (GPX4), and ferritin heavy chain 1 expression. Importantly, drug affinity responsive target stability, molecular docking, and surface plasmon resonance technologies elucidated the direct target Keap1 of curdione. Curdione disrupted the interaction between Keap1 and thioredoxin1 (Trx1) but enhanced the Trx1/GPX4 complex. In addition, curdione-derived protection against ISO-induced myocardial ferroptosis was blocked after overexpression of Keap1, while enhanced after Keap1 silence in H9c2 cells. These findings demonstrate that curdione inhibited ferroptosis in ISO-induced MI via regulating Keap1/Trx1/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Infarto del Miocardio , Animales , Ratones , Peroxidasa , Isoproterenol/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2 , Peroxidasas , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Transducción de Señal , Glutatión
10.
Acta Pharmacol Sin ; 44(12): 2504-2524, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37482570

RESUMEN

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1ß, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1ß and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Interleucina-18/efectos adversos , Receptores Purinérgicos P2X7/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR , Lipopolisacáridos/farmacología , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas de Unión al GTP
11.
J Ethnopharmacol ; 317: 116852, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37390879

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a common difficult disease with a high disability rate. Siegesbeckia orientalis L. (SO), a Chinese medicinal herb that is commonly used for treating RA in clinical practice. While, the anti-RA effect and the mechanisms of action of SO, as well as its active compound(s) have not been elucidated clearly. AIM OF THE STUDY: We aim to explore the molecular mechanism of SO against RA by using network pharmacology analysis, as well as the in vitro and in vivo experimental validations, and to explore the potential bioactive compound(s) in SO. METHODS: Network pharmacology is an advanced technology that provides us an efficient way to study the therapeutic actions of herbs with the underlying mechanisms of action delineated. Here, we used this approach to explore the anti-RA effects of SO, and then the molecular biological approaches were used to verify the prediction. We first established a drug-ingredient-target-disease network and a protein-protein interaction (PPI) network of SO-related RA targets, followed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Further, we used lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and vascular endothelial growth factor-A (VEGFA)-induced human umbilical vein endothelial cell (HUVEC) models, as well as adjuvant-induced arthritis (AIA) rat model to validate the anti-RA effects of SO. The chemical profile of SO was also determined by using the UHPLC-TOF-MS/MS analysis. RESULTS: Network pharmacology analysis highlighted inflammatory- and angiogenesis-related signaling pathways as promising pathways that mediate the anti-RA effects of SO. Further, in both in vivo and in vitro models, we found that the anti-RA effect of SO is at least partially due to the inhibition of toll like receptor 4 (TLR4) signaling. Molecular docking analysis revealed that luteolin, an active compound in SO, shows the highest degree of connections in compound-target network; moreover, it has a direct binding to the TLR4/MD-2 complex, which is confirmed in cell models. Besides, more than forty compounds including luteolin, darutoside and kaempferol corresponding to their individual peaks were identified tentatively via matching with the empirical molecular formulae and their mass fragments. CONCLUSION: We found that SO and its active compound luteolin exhibit anti-RA activities and potently inhibit TLR4 signaling both in vitro and in vivo. These findings not only indicate the advantage of network pharmacology in the discovery of herb-based therapeutics for treating diseases, but also suggest that SO and its active compound(s) could be developed as potential anti-RA therapeutic drugs.


Asunto(s)
Artritis Reumatoide , Asteraceae , Medicamentos Herbarios Chinos , Humanos , Animales , Ratas , Simulación del Acoplamiento Molecular , Luteolina/farmacología , Luteolina/uso terapéutico , Sigesbeckia , Receptor Toll-Like 4 , Factor A de Crecimiento Endotelial Vascular , Farmacología en Red , Espectrometría de Masas en Tándem , Artritis Reumatoide/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
12.
Phytomedicine ; 115: 154830, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37149964

RESUMEN

BACKGROUD: Xinbao Pill (XBP) is extensively used in the adjuvant treatment of chronic heart failure in China. However, the pharmacological effect and underlying mechanism on CHF remains unclear. PURPOSE: Our research was performed to investigate the cardioprotective effect of XBP against CHF and uncover the potential mechanism. METHODS: Male Sprague-Dawley (SD) rats were subjected to the left anterior descending (LAD) artery ligation for 8 weeks and were treated with different doses of XBP (from the 4th week to the end). Cardiac function and morphology assessment were performed by using M-mode echocardiography, H&E and Masson staining. Western blotting analysis, co-immunoprecipitation (IP) assays, siRNA transfection were used to evaluate the mechanism of XBP. RESULTS: XBP improved cardiac function and alleviated cardiac fibrosis in LAD-induced chronic heart failure rats. Meanwhile, XBP protected cardiomyocytes against oxygen-glucose deprivation (OGD) injury in AC16 cells and H9c2 cells. Additionally, XBP could increase the expression of ß1-AR and ß2-AR and inhibit their ubiquitanation. Further mechanism study showed that XBP upregulated USP18 expression, while silence of USP18 attenuated the cardioprotective effect of XBP and the increase of ß1-AR by XBP. Moreover, XBP increased MDM2 and ß-arrestin2, and disrupted the interaction between Nedd4 and ß2-AR. After using the inhibitor of MDM2, SP141, the cardioprotective effect of XBP and the inhibitory effect on the ubiquitanation of ß2-AR were also blocked. CONCLUSION: Our study firstly revealed that XBP improved cardiac function against CHF through suppressing USP18 and MDM2/ß-arrestin2/Nedd4-mediated the ubiquitination of ß1-AR and ß2-AR.


Asunto(s)
Insuficiencia Cardíaca , Receptores Adrenérgicos beta , Ratas , Masculino , Animales , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta/uso terapéutico , Ratas Sprague-Dawley , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos , Ubiquitinación , Receptores Adrenérgicos beta 2/metabolismo
13.
Front Pharmacol ; 14: 1111007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860302

RESUMEN

Background: Qiweiqiangxin І granules (QWQX І) is a traditional Chinese medicine preparation based on the basic theory of traditional Chinese medicine, which produces a good curative effect in treating chronic heart failure (CHF). However, its pharmacological effect and potential mechanism for CHF remain unknown. Aim of the study: The purpose of this study is to clarify the efficacy of QWQX І and its possible mechanisms. Materials and methods: A total of 66 patients with CHF were recruited and randomly assigned to the control or QWQX І groups. The primary endpoint was the effect of left ventricular ejection fraction (LVEF) after 4 weeks of treatment. The LAD artery of rats was occluded to establish the model of CHF. Echocardiography, HE and Masson staining were performed to evaluate the pharmacological effect of QWQX І against CHF. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) untargeted metabolomics was to screen endogenous metabolites in rat plasma and heart and elucidate the mechanism of QWQX І against CHF. Results: In the clinical study, a total of 63 heart failure patients completed the 4-week follow-up, including 32 in the control group and 31 in QWQX І group. After 4 weeks of treatment, LVEF was significantly improved in QWQX І group compared with the control group. In addition, the patients in QWQX І group had better quality of life than the control group. In animal studies, QWQX І significantly improved cardiac function, decreased B-type natriuretic peptide (BNP) levels, reduced inflammatory cell infiltration, and inhibited collagen fibril rate. Untargeted metabolomic analysis revealed that 23 and 34 differential metabolites were screened in the plasma and heart of chronic heart failure rats, respectively. 17 and 32 differential metabolites appeared in plasma and heart tissue after QWQX І treatment, which were enriched to taurine and hypotaurine metabolism, glycerophospholipid metabolism and linolenic acid metabolism by KEGG analysis. LysoPC (16:1 (9Z)) is a common differential metabolite in plasma and heart, which is produced by lipoprotein-associated phospholipase A2 (Lp-PLA2), hydrolyzes oxidized linoleic acid to produce pro-inflammatory substances. QWQX І regulates the level of LysoPC (16:1 (9Z)) and Lp-PLA2 to normal. Conclusion: QWQX І combined with western medicine can improve the cardiac function of patients with CHF. QWQX І can effectively improve the cardiac function of LAD-induced CHF rats through regulating glycerophospholipid metabolism and linolenic acid metabolism-mediated inflammatory response. Thus, QWQX I might provide a potential strategy for CHF therapy.

14.
Int J Biol Macromol ; 234: 123320, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682657

RESUMEN

A high concentration of oxalate is associated with an increased risk of kidney calcium oxalate (CaOx) stones, and the degradation of exogenous oxalate mostly depends on oxalate-degrading enzymes from the intestinal microbiome. We found that zinc gluconate supplement to patients with CaOx kidney stones could significantly improve the abundance of oxalate metabolizing bacteria in humans through clinical experiments on patients also subjected to antibiotic treatment. The analysis of clinical samples revealed that an imbalance of Lactobacillus and oxalate decarboxylase (OxDC) was involved in the formation of CaOx kidney stones. Then, we identified that Zn2+ could be used as an external factor to improve the activity of OxDC and promote Lactobacillus in the intestinal flora, and this treatment achieved a therapeutic effect on rats with stones aggravated by antibiotics. Finally, by analyzing the three-dimensional structure of OxDC and completing in vitro experiments, we propose a model of the Zn2+-induced reduction of CaOx kidney stone symptoms in rats by increasing the metabolism of oxalate through the positive effects of Zn2+ on Lactobacillus and OxDC.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Humanos , Ratas , Animales , Oxalato de Calcio/química , Oxalatos/metabolismo , Cálculos Renales/tratamiento farmacológico , Lactobacillus/metabolismo , Zinc , Calcio
15.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36627345

RESUMEN

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones , Humanos , Animales , Simulación del Acoplamiento Molecular , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Colágeno Tipo I/metabolismo
16.
Phytomedicine ; 109: 154602, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610138

RESUMEN

BACKGROUND: Depression is a common complication after myocardial infarction (MI) that can seriously affect the prognosis of MI. PURPOSE: To investigate whether formononetin could ameliorate MI injury and depressive behaviours in a mouse model of MI with depression and elucidate its underlying molecular mechanisms. METHODS: Haemodynamic measurements (systolic blood pressure (SYS), the maximum rate of rise of LV pressure (± dp/dtmax)) and behavior tests (tail suspension test, sucrose preference test, forced swimming test) were used to evaluate the effects of formononetin on male C57BL/6N mice after left anterior descending (LAD) coronary artery ligation and chronic unpredictable stress. RT-qPCR, immunohistochemistry, immunofluorescence analysis, western blotting, molecular docking technology, surface plasmon resonance and gene-directed mutagenesis were used to clarify the underlying mechanism. RESULTS: Formononetin significantly suppressed the depressive behaviours and improved cardiac dysfunction in MI with depression mice model. Formononetin inhibited M1 polarization in macrophages/microglia, while promoting M2 polarization. Importantly, elevated serum IL-6 and IL-17A levels were found in patient with MI, and the patient serum induced M1 microglial polarization; however, formononetin reversed the polarization. Further mechanistic studies showed that formononetin inhibited GSK-3ß activity and downstream Notch1 and C/EBPα signaling pathways. Covalent molecular docking showed that formononetin bound to Cys199 of GSK-3ß and it has a high affinity for GSK-3ß. When Cys199 was mutation, the inhibitory effect of formononetin on GSK-3ß activity and M1 polarization in macrophages/microglia were also partly blocked. CONCLUSIONS: Our results firstly uncovered that formononetin improved cardiac function and suppressed depressive behaviours in mice after MI with depression by targeting GSK-3ß to regulate macrophage/microglial polarization. More importantly, IL-6 and IL-17A produced after MI may cause neuroinflammation, which might be the key factors for depression. Formononetin may be a potential drug for treating MI with depression.


Asunto(s)
Microglía , Infarto del Miocardio , Ratones , Masculino , Animales , Microglía/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-17/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Macrófagos/metabolismo
17.
J Ethnopharmacol ; 303: 115879, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370966

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzi, the lateral roots of Aconitum carmichaelii Debx, plays an irreplaceable role in treating Yang deficiency and cold coagulation syndromes. However, Fuzi has a narrow margin of safety since its pharmacological constituents, Aconitum alkaloids, have potential cardiotoxicity and neurotoxicity. The current quality markers (Q-markers) for the control of Fuzi's efficacy and toxicity are 3 monoester-diterpenoid alkaloids, namely, benzoylaconine (BAC), benzoylhypaconine and benzoylmesaconine (BMA) and 3 diester-diterpenoid alkaloids, namely, aconitine (AC), hypaconitine and mesaconitine (MA). However, mounting evidence indicates that the current 6 Q-markers may not be efficacy- or toxicity-specific enough for Fuzi. AIM OF THE STUDY: The aim of this study was to explore and evaluate efficacy- or toxicity-specific potential quality markers (PQ-markers) of Fuzi. MATERIALS AND METHODS: PQ-markers were explored by analyzing 30 medicinal samples and alkaloids exposed in mouse. Pharmacokinetics of PQ-markers on C57BL/6J mice were determined. Anti-inflammatory effects of PQ-markers were evaluated by λ-carrageenan-induced paw edema model and lipopolysaccharide-induced RAW264.7 cell inflammatory model, while analgesic effects were assessed by acetic acid-induced pain model and Hargreaves test. Cardiotoxicity and neurotoxicity of PQ-markers were assessed by histological and biochemical analyses, while acute toxicity was evaluated by modified Kirschner method. RESULTS: After in vitro and in vivo explorations, 7 PQ-markers, namely, neoline (NE), fuziline (FE), songorine (SE), 10-OH mesaconitine (10-OH MA), talatizamine, isotalatizidine and 16ß-OH cardiopetalline, were found. In the herbal medicines, NE, FE, SE and 10-OH MA were found in greater abundance than many other alkaloids. Specifically, the amounts of NE, FE and SE in the Fuzi samples were all far higher than that of BAC, and the contents of 10-OH MA in 56.67% of the samples were higher than that of AC. In mouse plasma and tissues, NE, FE, SE, talatizamine, isotalatizidine and 16ß-OH cardiopetalline had higher contents than the other alkaloids, including the 6 current Q-markers. The pharmacokinetics, efficacy and toxicity of NE, FE, SE and 10-OH MA were further evaluated. The average oral bioavailabilities of NE (63.82%), FE (18.14%) and SE (49.51%) were higher than that of BMA (3.05%). Additionally, NE, FE and SE produced dose-dependent anti-inflammatory and analgesic effects, and their actions were greater than those of BMA. Concurrently, the toxicities of NE, FE and SE were lower than those of BMA, since no cardiotoxicity or neurotoxicity was found in mice after NE, FE and SE treatment, while BMA treatment notably increased the creatine kinase activity and matrix metalloproteinase 9 level in mice. The average oral bioavailability of 10-OH MA (7.02%) was higher than that of MA (1.88%). The median lethal dose (LD50) of 10-OH MA in mice (0.11 mg/kg) after intravenous injection was close to that of MA (0.13 mg/kg). Moreover, 10-OH MA produced significant cardiotoxicity and neurotoxicity, and notable anti-inflammatory and analgesic effects that were comparable to those of MA. CONCLUSIONS: Seven PQ-markers of Fuzi were found after in vitro and in vivo explorations. Among them, NE, FE and SE were found to be more efficacy-specific than BMA, and 10-OH MA was as toxicity-specific as MA.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Medicamentos Herbarios Chinos , Ratones , Animales , Aconitina/farmacocinética , Ratones Endogámicos C57BL , Alcaloides/química , Medicamentos Herbarios Chinos/química , Diterpenos/análisis , Raíces de Plantas/química , Antiinflamatorios/análisis , Analgésicos/análisis , Aconitum/química , Cromatografía Líquida de Alta Presión/métodos
18.
J Ethnopharmacol ; 302(Pt A): 115845, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36265675

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Various traditional Chinese medicines from the genus Ilex (Aquifoliaceae) have been reported to have excellent hypolipidaemic effects. Although triterpenoids have been found to be the main active components, the underlying mechanisms have not been clarified. AIM OF THE STUDY: This study aimed to investigate the lipid-lowering effect, structure-activity relationship and action mechanism of triterpenoids from the genus Ilex. MATERIALS AND METHODS: FFA was used to induce HepG2 cells to establish a classical lipid-lowering activity screening model for the activities of 31 triterpenoids, and the contents of intracellular lipids, TC, and TG were measured. Furthermore, the structure-activity relationship was discussed. Mechanistically, UPLC-Q/TOF-MS-based metabolomics and lipidomics studies were performed, and metabolic pathways were analysed to investigate the lipid-lowering mechanism. Moreover, western blotting was performed to analyse the expression of key proteins of lipid metabolism and predict the targets of action. RESULTS: Thirteen triterpenoids significantly reduced intracellular lipid accumulation and decreased the levels of TG and TC. Among them, rotundic acid (RA) showed stronger lipid-lowering activity than the simvastatin-positive group, and structure-activity relationship analysis indicated that the hydroxyl groups at C-3 and C-19, hydroxymethyl groups at C-23, and carboxyl groups at C-28 may be the key groups for biological activity. Twenty-two metabolites in the metabolomics study and 19 metabolites in the lipidomics study were identified. The identified biomarkers were primarily glycerophosphocholine, LysoPCs, PCs, TAGs, LysoPEs, LysoPIs and sphingolipids, which are involved in glycerophospholipid and sphingolipid metabolism. Moreover, western blotting analysis showed that the expression of SREBP-1 and HMGCR decreased, while AMPK and ACC phosphorylation and the expression of CPT1A and CYP7A1 increased in the RA-treated group. CONCLUSION: The results suggested that triterpenoids from the genus Ilex showed significant lipid-lowering effects and that RA may be a novel hypolipidaemic drug candidate. Moreover, the underlying mechanism indicated that RA showed a lipid-lowering effect by regulating glycerophospholipid and sphingolipid metabolism and activating the AMPK pathway.


Asunto(s)
Ilex , Trastornos del Metabolismo de los Lípidos , Triterpenos , Humanos , Células Hep G2 , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , Ácidos Grasos no Esterificados , Triterpenos/farmacología , Glicerofosfolípidos , Esfingolípidos
19.
Phytomedicine ; 108: 154536, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36395561

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the pathological basis of multiple cardiovascular diseases. The pathogenesis of AS is closely related to the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs). Nuciferine, an aporphine alkaloid from lotus leaf, has various pharmacological activities. However, the effect and mechanism of nuciferine on regulating proliferation and migration of VSMCs against AS is still unclear. PURPOSE: To elucidate the pharmacological effect and molecular mechanism of nuciferine on AS in ApoE(-/-) mice fed with High-Fat-Diet (HFD). STUDY DESIGN: HFD-fed ApoE(-/-) mice and 3% fetal bovine serum (FBS) induced mouse aortic vascular smooth muscle cells (MOVAS) were used to investigate the protective effect and mechanism of nuciferine on AS. METHODS: Oil red O staining was used to detect the atherosclerotic lesions. Western blotting and immunofluorescence were used to determine calmodulin 4 (Calm4) expression and localization. CCK-8 assay, transwell and wound-healing assays were used to measure the migration and proliferation of MOVAS cells. RESULTS: Nuciferine at 40 mg/kg significantly ameliorated the aortic lesion and vascular plaque in AS model, which was equal to the effect of the positive control drug (atorvastatin). In addition, nuciferine attenuated the migration and proliferation of VSMCs in vivo and in vitro. Importantly, nuciferine down-regulated the increase of Calm4 induced by HFD-fed in ApoE(-/-) mice or 3% FBS induced MOVAS cells. However, the inhibitory effect of nuciferine on the migration and proliferation of MOVAS cells was blocked when Calm4 was overexpressed. Furthermore, we found that nuciferine suppressed MMP12 and PI3K/Akt signaling pathway via Calm4. CONCLUSION: Our results illustrated that Calm4 promoted the proliferation and motility of MOVAS by activating MMP12/Akt signaling pathway in AS. Nuciferine has a significant anti-atherogenic effect by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT signaling pathway. Thus, Calm4 could potentially be a new target for AS therapy, and nuciferine could be a potential drug against AS.


Asunto(s)
Aporfinas , Aterosclerosis , Animales , Ratones , Apolipoproteínas E , Aporfinas/farmacología , Aterosclerosis/metabolismo , Movimiento Celular , Proliferación Celular , Dieta Alta en Grasa , Metaloproteinasa 12 de la Matriz/metabolismo , Músculo Liso Vascular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Front Pharmacol ; 13: 1058799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386125

RESUMEN

Introduction: Chronic heart failure (CHF) is a common cardiovascular disease. In China, Xinbao pill (XBP) is widely used as an adjuvant therapy for CHF. However, there is still a lack of high-quality clinical evidence. We designed this multicenter, randomized, double-blind, placebo-controlled trial to critically evaluate the efficacy and safety of XBP as an adjuvant treatment for patients with CHF. Methods and analysis: We will recruit 284 patients with a clinical diagnosis of "heart-kidney yang deficiency syndrome" CHF receiving treatment in six hospitals in China. Patients will be randomly assigned, in a 1:1 ratio, to the treatment or control group using a central randomization system. All patients will receive conventional drug therapy for heart failure combined XBP (Guangdong Xinbao Pharmaceutical Co., Ltd., Guangdong, China) or a placebo. Study physicians, subjects, outcome assessors, and statisticians will be blinded to the group assignment. The primary outcome will be the change in the proportion of patients who show a decrease in serum NT-proBNP of more than 30% after treatment. Secondary outcomes are NYHA class, 6-minute walk distance test, Minnesota Quality of Life Scale score, endpoint events, serum NT-proBNP, echocardiographic parameters, and traditional Chinese medicine (TCM) symptom score. Adverse events will be monitored throughout the trial. Data will be analyzed according to a predetermined statistical analysis plan. Discussion: The results of this study will provide solid evidence of the safety and efficacy of XBP as an alternative and complementary treatment measure for patients with CHF. Clinical Trial Registration: Chinese Clinical Trial Registration Center (ChiCTR2000038492).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA