Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 66(3): 592-605, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178321

RESUMEN

Glucose is a key modulator of feeding behavior. By acting in peripheral tissues and in the central nervous system, it directly controls the secretion of hormones and neuropeptides and modulates the activity of the autonomic nervous system. GLUT2 is required for several glucoregulatory responses in the brain, including feeding behavior, and is localized in the hypothalamus and brainstem, which are the main centers that control this behavior. In the hypothalamus, GLUT2 has been detected in glial cells, known as tanycytes, which line the basal walls of the third ventricle (3V). This study aimed to clarify the role of GLUT2 expression in tanycytes in feeding behavior using 3V injections of an adenovirus encoding a shRNA against GLUT2 and the reporter EGFP (Ad-shGLUT2). Efficient in vivo GLUT2 knockdown in rat hypothalamic tissue was demonstrated by qPCR and Western blot analyses. Specificity of cell transduction in the hypothalamus and brainstem was evaluated by EGFP-fluorescence and immunohistochemistry, which showed EGFP expression specifically in ependymal cells, including tanycytes. The altered mRNA levels of both orexigenic and anorexigenic neuropeptides suggested a loss of response to increased glucose in the 3V. Feeding behavior analysis in the fasting-feeding transition revealed that GLUT2-knockdown rats had increased food intake and body weight, suggesting an inhibitory effect on satiety. Taken together, suppression of GLUT2 expression in tanycytes disrupted the hypothalamic glucosensing mechanism, which altered the feeding behavior.


Asunto(s)
Conducta Alimentaria/fisiología , Transportador de Glucosa de Tipo 2/metabolismo , Hipotálamo/metabolismo , Neuroglía/metabolismo , Saciedad/fisiología , Animales , Peso Corporal , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Células Cultivadas , Ayuno/metabolismo , Técnicas de Silenciamiento del Gen , Transportador de Glucosa de Tipo 2/genética , Hipotálamo/citología , Masculino , Neuroglía/citología , Neuropéptidos/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
2.
PLoS One ; 6(1): e16411, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21297988

RESUMEN

Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes.


Asunto(s)
Epéndimo/metabolismo , Glucosa/metabolismo , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/análisis , Proteínas Musculares/análisis , Neuroglía/metabolismo , Neuronas/metabolismo , Simportadores/análisis , Animales , Células Cultivadas , Epéndimo/química , Epéndimo/citología , Hipotálamo/química , Hipotálamo/citología , Metabolismo , Ratas , Ratas Sprague-Dawley
3.
ASN Neuro ; 2(3): e00035, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20531973

RESUMEN

It has recently been proposed that hypothalamic glial cells sense glucose levels and release lactate as a signal to activate adjacent neurons. GK (glucokinase), the hexokinase involved in glucose sensing in pancreatic beta-cells, is also expressed in the hypothalamus. However, it has not been clearly determined if glial and/or neuronal cells express this protein. Interestingly, tanycytes, the glia that cover the ventricular walls of the hypothalamus, are in contact with CSF (cerebrospinal fluid), the capillaries of the arcuate nucleus and adjacent neurons; this would be expected for a system that can detect and communicate changes in glucose concentration. Here, we demonstrated by Western-blot analysis, QRT-PCR [quantitative RT-PCR (reverse transcription-PCR)] and in situ hybridization that GK is expressed in tanycytes. Confocal microscopy and immuno-ultrastructural analysis revealed that GK is localized in the nucleus and cytoplasm of beta1-tanycytes. Furthermore, GK expression increased in these cells during the second week of post-natal development. Based on this evidence, we propose that tanycytes mediate, at least in part, the mechanism by which the hypothalamus detects changes in glucose concentrations.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucoquinasa/biosíntesis , Hipotálamo/enzimología , Hipotálamo/crecimiento & desarrollo , Neuroglía/enzimología , Factores de Edad , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Glucoquinasa/genética , Hipotálamo/citología , Neuroglía/citología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA