Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 59(15): 5885-5892, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30550611

RESUMEN

Purpose: For more than 20 years, there has been an international, multidisciplinary effort to develop retinal prostheses to restore functional vision to patients blinded by retinal degeneration. We developed a novel subretinal prosthesis with 1512 optically addressed silicon nanowire photodiodes, which transduce incident light into an electrical stimulation of the remaining retinal circuitry. This study was conducted to evaluate the efficacy of optically driving the subretinal prosthesis to produce visual cortex activation via electrical stimulation of the retina. Methods: We measured electrically evoked potential responses (EEPs) in rabbit visual cortex in response to illumination of the subretinal nanowire prosthesis with pulsed 852-nm infrared (IR) light. We compared the EEP responses to visually evoked potential responses (VEPs) to pulsed 532-nm visible light (positive control) and pulsed 852-nm IR light (negative control). Results: Activating the devices with IR light produced EEP responses with a significantly higher trough-to-peak amplitude (54.17 ± 33.4 µV) than IR light alone (24.07 ± 22.1 µV) or background cortical activity (23.22 ± 17.2 µV). EEP latencies were significantly faster than focal VEP latencies. Focal VEPs produced significantly higher amplitudes (94.88 ± 43.3 µV) than EEPs. We also demonstrated how an electrode placed on the cornea can be used as a noninvasive method to monitor the function of the implant. Conclusions: These results show that subretinal electrical stimulation with nanowire electrodes can elicit EEPs in the visual cortex, providing evidence for the viability of a subretinal nanowire prosthetic approach for vision restoration.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Nanocables , Implantación de Prótesis , Retina/fisiología , Silicio , Corteza Visual/fisiología , Prótesis Visuales , Animales , Terapia por Estimulación Eléctrica/métodos , Estimulación Luminosa , Conejos
2.
Opt Lett ; 40(19): 4440-3, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26421551

RESUMEN

Falling on the tail of the absorption spectrum of silicon, 1060 nm Si detectors often suffer from low responsivity unless an exceedingly thick absorption layer is used, a design that requires high operation voltage and high purity epitaxial or substrate material. We report an all-silicon 1060 nm detector with ultrahigh gain to allow for low operation voltage (<4 V) and thin (200 nm) effective absorption layer, using the recently discovered cycling excitation process. With 1% external quantum efficiency, a responsivity of 93 A/W was demonstrated in a p/n junction device compatible with the complementary metal-oxide-semiconductor process.

3.
Nano Lett ; 12(11): 5929-35, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23098159

RESUMEN

We experimentally demonstrate a vertically arrayed silicon nanowire-based device that exhibits voltage dependence of photoresponse to infrared sub-bandgap optical radiation. The device is fabricated using a proximity solid-state phosphorus diffusion method to convert the surface areas of highly boron-doped silicon nanowires into n-type, thus forming a radial core-shell p-n junction structure. Prominent photoresponse from such core-shell Si nanowires is observed under sub-bandgap illumination at 1310 nm. The strong bias dependence of the photoresponse and other device characteristics indicates that the sub-bandgap absorption is attributed to the intrinsic properties of core-shell Si nanowires rather than the surface states. The attractive characteristics are based on three physical mechanisms: the Franz-Keldysh effect, quasi-quantum confinement effect, and the impurity-state assisted photon absorption. The first two effects enhance carrier tunneling probability, rendering a stronger wave function overlap to facilitate sub-bandgap absorption. The last effect relaxes the k-selection rule by involving the localized impurity states, thus removing the limit imposed by the indirect bandgap nature of Si. The presented device uses single-crystal silicon and holds promise of fabricating nanophotonic systems in a fully complementary metal-oxide-semiconductor (CMOS) compatible process. The concept and approach can be applied to silicon and other materials to significantly extend the operable wavelength regime beyond the constraint of energy bandgap.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA