Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Sci ; 294: 110456, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32234225

RESUMEN

The feedback regulation of photosynthesis depends on the cooperation of multiple signals, including sugars. Herein, the effect of shoot girdling was monitored on a daily basis for three days in green- and red-leafed Prunus cerasifera plants (GLP and RLP, respectively). The effect of anthocyanin presence was investigated in terms of photosynthesis, sugar metabolism and photoprotection. Net photosynthesis (A390) and stomatal conductance were reduced on the first day at 12:00 only in the girdled GLP (29 and 33 %, respectively). Moreover, the girdled GLP displayed at 12:00 higher sucrose, glucose and fructose concentrations than control leaves. Conversely, girdled RLP showed the first reduction of A390 at 18:00, with no significant differences at 12:00 in sucrose and glucose concentrations. The increased biosynthesis of anthocyanins that was only detected in girdled RLP contributed to lowering the accumulation of hexoses. Overall, these results revealed a sugar-buffering role exerted by anthocyanins that positively influence the feedback regulation of photosynthesis. Moreover, non-photochemical quenching, namely pNPQ, revealed the ability of anthocyanins to photoprotect photosystem II from supernumerary photons reaching the chloroplast, whose function was compromised by girdling. The present study provides a starting point to understand the possible link between photosynthesis regulation through sugar signalling and anthocyanin upregulation.


Asunto(s)
Antocianinas/metabolismo , Prunus domestica/metabolismo , Antocianinas/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Sorbitol/metabolismo , Almidón/metabolismo
2.
Sci Rep ; 10(1): 1959, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029804

RESUMEN

The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Prunus domestica/fisiología , Senescencia Celular/genética , Color , Regulación hacia Abajo , Flavonoides/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Regulación hacia Arriba
3.
Food Chem ; 294: 518-525, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31126494

RESUMEN

Ancient apple cultivars are known for their organoleptic properties over a small geographic area, but little is known of their nutraceutical properties, which might be useful in large-scale breeding programmes. Nine ancient apple cultivars from Tuscany (Italy) were characterized for their organoleptic properties, phenolic profiles, and antioxidant activity. These cultivars had high polyphenol concentrations (principally flavanols and phenolic acids) and high total antioxidant capacity compared with most commercial apple cultivars. Fruits from the cultivars 'San Michele' and 'Del Debbio' showed a good compromise between fruit size and solid soluble content, and might be suitable for fresh consumption, while fruit from 'Benito', 'Della Piastra', 'Lugliese Grisanti', 'Del Sangue' and 'Ruggine' had high polyphenol contents and excellent antioxidant capacity, and may be suitable for breeding programmes. 'Ruggine' fruit could also be used for sweet juices with good nutraceutical properties due to their high soluble solid content and high flavanol concentration.


Asunto(s)
Malus/química , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Flavanonas/análisis , Frutas/química , Frutas/metabolismo , Hidroxibenzoatos/análisis , Italia , Malus/crecimiento & desarrollo , Malus/metabolismo , Espectrometría de Masas , Extractos Vegetales/química , Análisis de Componente Principal
4.
Molecules ; 24(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067628

RESUMEN

Ancient apple cultivars usually have higher nutraceutical value than commercial ones, but in most cases their variability in pomological traits does not allow us to discriminate among them. Fruit of two Tuscany ancient apple cultivars, 'Casciana' and 'Rotella', picked from eight different orchards (four for each cultivar) were analyzed for their pomological traits, organoleptic qualities, polyphenolic profile and antiradical activity. The effectiveness of a polyphenol-based cluster analysis was compared to molecular markers (internal transcribed spacers, ITS1 and ITS2) to unequivocally discern the two apples. 'Casciana' and 'Rotella' fruit had a higher nutraceutical value than some commercial cultivars, in terms of phenolic abundance, profile and total antiradical activity. Although pedo-climatic conditions of different orchards influenced the phenolic profile of both apples, the polyphenolic discriminant analysis clearly separated the two cultivars, principally due to higher amounts of procyanidin B2, procyanidin B3 and p-coumaroylquinic acid in 'Casciana' than in 'Rotella' fruit. These three polyphenols can be used proficiently as biochemical markers for distinguishing the two apples when pomological traits cannot. Conversely, ITS1 and ITS2 polymorphism did not allow us to distinguish 'Casciana' from 'Rotella' fruit. Overall, the use of polyphenolic fingerprint might represent a valid tool to ensure the traceability of products with a high economic value.


Asunto(s)
Biomarcadores , Frutas/genética , Malus/genética , Polifenoles/genética , Biflavonoides/química , Biflavonoides/genética , Catequina/química , Catequina/genética , Flavonoides/química , Flavonoides/genética , Frutas/química , Italia , Malus/química , Malus/clasificación , Extractos Vegetales/química , Polifenoles/química , Proantocianidinas/química , Proantocianidinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA