Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23289, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169946

RESUMEN

Ethnopharmacological relevance: In recent times the decriminalisation of cannabis globally has increased its use as an alternative medication. Where it has been used in modern medicinal practises since the 1800s, there is limited scientific investigation to understand the biological activities of this plant. Aim of the study: Dipeptidyl peptidase IV (DPP-IV) plays a key role in regulating glucose homeostasis, and inhibition of this enzyme has been used as a therapeutic approach to treat type 2 diabetes. However, some of the synthetic inhibitors for this enzyme available on the market may cause undesirable side effects. Therefore, it is important to identify new inhibitors of DPP-IV and to understand their interaction with this enzyme. Methods: In this study, four cannabinoids (cannabidiol, cannabigerol, cannabinol and Δ9-tetrahydrocannabinol) were evaluated for their inhibitory effects against recombinant human DPP-IV and their potential inhibition mechanism was explored using both in vitro and in silico approaches. Results: All four cannabinoids resulted in a dose-dependent response with IC50 values of between 4.0 and 6.9 µg/mL. Kinetic analysis revealed a mixed mode of inhibition. CD spectra indicated that binding of cannabinoids results in structural and conformational changes in the secondary structure of the enzyme. These findings were supported by molecular docking studies which revealed best docking scores at both active and allosteric sites for all tested inhibitors. Furthermore, molecular dynamics simulations showed that cannabinoids formed a stable complex with DPP-IV protein via hydrogen bonds at an allosteric site, suggesting that cannabinoids act by either inducing conformational changes or blocking the active site of the enzyme. Conclusion: These results demonstrated that cannabinoids may modulate DPP-IV activity and thereby potentially assist in improving glycaemic regulation in type 2 diabetes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-30410871

RESUMEN

The emergence of multi-drug resistance in pathogenic bacteria in clinical settings as well as food-borne infections has become a serious health concern. The problem of drug resistance necessitates the need for alternative novel therapeutic strategies to combat this menace. One such approach is targeting the quorum-sensing (QS) controlled virulence and biofilm formation. In this study, we first screened different fractions of Psoralea corylifolia (seed) for their anti-QS property in the Chromobacterium violaceum 12472 strain. The methanol fraction was found to be the most active fraction and was selected for further bioassays. At sub-inhibitory concentrations, the P. corylifolia methanol fraction (PCMF) reduced QS-regulated virulence functions in C. violaceum CVO26 (violacein); Pseudomonas aeruginosa (elastase, protease, pyocyanin, chitinase, exopolysaccharides (EPS), and swarming motility), A. hydrophila (protease, EPS), and Serratia marcescens (prodigiosin). Biofilm formation in all the test pathogens was reduced significantly (p ≤ 0.005) in a concentration-dependent manner. The ß-galactosidase assay showed that the PCMF at 1,000 µg/ml downregulated las-controlled transcription in PAO1. In vivo studies with C. elegans demonstrated increased survival of the nematodes after treatment with the PCMF. Bakuchiol, a phytoconstituent of the extract, demonstrated significant inhibition of QS-regulated violacein production in C. violaceum and impaired biofilm formation in the test pathogens. The molecular docking results suggested that bakuchiol efficiently binds to the active pockets of LasR and RhlR, and the complexes were stabilized by several hydrophobic interactions. Additionally, the molecular dynamics simulation of LasR, LasR-bakuchiol, RhlR, and RhlR-bakuchiol complexes for 50 ns revealed that the binding of bakuchiol to LasR and RhlR was fairly stable. The study highlights the anti-infective potential of the PCMF and bakuchiol instead of bactericidal or bacteriostatic action, as the extract targets QS-controlled virulence and the biofilm.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Fenoles/farmacología , Extractos Vegetales/farmacología , Psoralea/química , Percepción de Quorum/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Fenoles/administración & dosificación , Fenoles/aislamiento & purificación , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Semillas/química , Análisis de Supervivencia , Resultado del Tratamiento , Virulencia/efectos de los fármacos
3.
Int J Biol Macromol ; 107(Pt B): 2580-2589, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29079437

RESUMEN

Microtubule affinity regulating kinase 4 (MARK4) is a member of AMP-activated protein kinase, found to be involved in apoptosis, inflammation and many other regulatory pathways. Since, its aberrant expression is directly associated with the cell cycle and thus cancer. Therefore, MARK4 is being considered as a potential drug target for cancer therapy. Here, we investigated the mechanism of inhibition of MARK4 activity by citral. Docking studies suggested that citral effectively binds to the active site cavity, and complex is stabilized by several interactions. We further performed molecular dynamics simulation of MARK4-citral complex under explicit water condition for 100ns and observed that binding of citral to MARK4 was quite stable. Fluorescence binding studies suggested that citral strongly binds to MARK4 and thereby inhibits its enzyme activity which was measured by the kinase inhibition assay. We further performed MTT assay and observed that citral inhibits proliferation of breast cancer cell line MCF-7. This work provides a newer insight into the use of citral as novel cancer therapeutics through the MARK4 inhibition. Results may be employed to design novel therapeutic molecule using citral as a scaffold for MARK4 inhibition to fight related diseases.


Asunto(s)
Progresión de la Enfermedad , Simulación de Dinámica Molecular , Monoterpenos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/química , Monoterpenos Acíclicos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Células HEK293 , Humanos , Monoterpenos/química , Monoterpenos/farmacología , Neoplasias/enzimología , Análisis de Componente Principal , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA