Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37350733

RESUMEN

Magnesium oxide (MgO) is one of the most used Mg supplements in livestock. However, to avoid relying upon only one Mg source, it is important to have alternative Mg sources. Therefore, the objective of this study was to evaluate the effects of the interaction of two Mg sources with buffer use on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. Twenty lactating Holstein cows were blocked by parity and days in milk into five blocks with four cows each, in a 2 × 2 factorial design. Within blocks, cows were assigned to one of four treatments: 1) MgO; 2) MgO + Na sesquicarbonate (MgO+); 3) calcium-magnesium hydroxide (CaMgOH); 4) CaMgOH + Na sesquicarbonate (CaMgOH+). For 60 d, cows were individually fed a corn silage-based diet, and treatments were top-dressed. Ruminal fluid was collected via an orogastric tube, for analyses of the microbiota composition, volatile fatty acids (VFA), lactate, and ammonia nitrogen (NH3-N). The microbiota composition was analyzed using V4/16S rRNA gene sequencing, and taxonomy was assigned using the Silva database. Statistical analysis was carried out following the procedures of block design analysis, where block and cow were considered random variables. Effects of Mg source, buffer, and the interaction between Mg Source × Buffer were analyzed through orthogonal contrasts. There was no interaction effect of the two factors evaluated. There was a greater concentration of NH3-N, lactate, and butyrate in the ruminal fluid of cows fed with CaMg(OH)2, regardless of the buffer use. The increase in these fermentation intermediates/ end-products can be explained by an increase in abundance of micro-organisms of the genus Prevotella, Lactobacillus, and Butyrivibrio, which are micro-organisms mainly responsible for proteolysis, lactate-production, and butyrate-production in the rumen, respectively. Also, dietary buffer use did not affect the ruminal fermentation metabolites and pH; however, an improvement of the apparent total tract digestibility of dry matter (DM), organic matter (OM), neutral fiber detergent (NDF), and acid fiber detergent (ADF) were found for animals fed with dietary buffer. In summary, there was no interaction effect of buffer use and Mg source, whereas buffer improved total tract apparent digestibility of DM and OM through an increase in NDF and ADF digestibility and CaMg(OH)2 increased ruminal concentration of butyrate and abundance of butyrate-producing bacteria.


Magnesium oxide (MgO) is extensively used as a dietary magnesium (Mg) source in dairy cow diets. However, dairy operations can benefit from other Mg sources. Thus, we evaluated the replacement of dietary MgO with calcium­magnesium hydroxide (CaMg(OH)2) in diets with and without ruminal buffer and their effects on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. The study used 20 lactating Holstein cows that were blocked in groups of four and randomly assigned to one of the four treatments. The ruminal content, feed, feces, and urine were collected for analysis of the microbiota composition, ruminal fermentation, nitrogen metabolism, and apparent nutrient digestibility. There was no interaction effect of dietary buffer use and Mg source, while buffer improved total tract apparent digestibility of the dry matter and fiber components; CaMg(OH)2 increased the ruminal concentration of butyrate and the abundance of butyrate-producing bacteria. In summary, we conclude that using CaMg(OH)2 can improve ruminal fermentation regardless of buffer use, which indicates that we can take advantage of the mineral formulation in the diet to modulate the ruminal microbiota composition.


Asunto(s)
Lactancia , Microbiota , Embarazo , Femenino , Bovinos , Animales , Magnesio/análisis , Magnesio/metabolismo , Magnesio/farmacología , Fermentación , Óxido de Magnesio/análisis , Óxido de Magnesio/metabolismo , Óxido de Magnesio/farmacología , Detergentes/análisis , Detergentes/metabolismo , Detergentes/farmacología , ARN Ribosómico 16S/metabolismo , Digestión , Leche/metabolismo , Dieta/veterinaria , Butiratos/análisis , Zea mays/metabolismo , Lactatos/análisis , Lactatos/metabolismo , Lactatos/farmacología , Rumen/metabolismo
2.
Transl Anim Sci ; 6(3): txac092, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35912064

RESUMEN

Our objective was to evaluate the inclusion of calcium-magnesium carbonate [CaMg(CO3)2] and calcium-magnesium hydroxide [CaMg(OH)4] in corn silage-based diets and their impact on ruminal microbiome. Our previous work showed a lower pH and molar proportion of butyrate from diets supplemented with [CaMg(CO3)2] compared to [CaMg(OH)4]; therefore, we hypothesized that ruminal microbiome would be affected by Mg source. Four continuous culture fermenters were arranged in a 4 × 4 Latin square with the following treatments defined by the supplemental source of Mg: 1) Control (100% MgO, plus sodium sesquicarbonate as a buffer); 2) CO 3 [100% CaMg(CO3)2]; 3) OH [100% CaMg(OH)4]; and 4) CO 3 /OH [50% Mg from CaMg(CO3)2, 50% Mg from CaMg(OH)4]. Diet nutrient concentration was held constant across treatments (16% CP, 30% NDF, 1.66 MCal NEl/kg, 0.67% Ca, and 0.25% Mg). We conducted four fermentation periods of 10 d, with the last 3 d for collection of samples of solid and liquid digesta effluents for DNA extraction. Overall, 16 solid and 16 liquid samples were analyzed by amplification of the V4 variable region of bacterial 16S rRNA. Data were analyzed with R and SAS to determine treatment effects on taxa relative abundance of liquid and solid fractions. Correlation of butyrate molar proportion with taxa relative abundance was also analyzed. Treatments did not affect alpha and beta diversities or relative abundance of phylum, class and order in either liquid or solid fractions. At the family level, relative abundance of Lachnospiraceae in solid fraction was lower for CO3 and CO3/OH compared to OH and Control (P < 0.01). For genera, abundance of Butyrivibrio (P = 0.01) and Lachnospiraceae ND3007 (P < 0.01) (both from Lachnospiraceae family) was lower and unclassified Ruminococcaceae (P = 0.03) was greater in CO3 than Control and OH in solid fraction; while abundance of Pseudobutyrivibrio (P = 0.10) and Lachnospiraceae FD2005 (P = 0.09) (both from Lachnospiraceae family) and Ruminobacter (P = 0.09) tended to decrease in CO3 compared to Control in liquid fraction. Butyrate molar proportion was negatively correlated to Ruminococcaceae (r = -0.55) in solid fraction and positively correlated to Pseudobutyrivibrio (r = 0.61) and Lachnospiraceae FD2005 (r = 0.61) in liquid. Our results indicate that source of Mg has an impact on bacterial taxa associated with ruminal butyrate synthesis, which is important for epithelial health and fatty acid synthesis.

3.
J Anim Sci ; 99(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34402901

RESUMEN

This study aimed to evaluate the effect of dietary yerba mate (Ilex paraguariensis) extract (YME) on muscle metabolomics and physicochemical properties of lamb meat. Thirty-six uncastrated male lambs (90 d old) were fed experimental diets, which treatments consisted of 0%, 1%, 2%, and 4% inclusion of YME. Animals were fed for 50 d before slaughter. Muscle and meat samples were collected for metabolomics and meat quality analysis, respectively. The experiment was carried out in a randomized block design and analyzed using orthogonal contrasts. There was a quadratic effect of YME inclusion in tenderness (P < 0.05) and a positive linear effect on meat lightness (P < 0.05). No qualitative changes (P > 0.05) on individual metabolites were observed; however, changes in the quantitative metabolic profile were observed, showing that animals fed 1% and 2% of YME have a greater concentration of desirable endogenous muscle antioxidants, with direct impact on metabolic pathways related to beta-alanine metabolism and glutathione metabolism. Therefore, YME dietary supplementation up to 2% of the diet to lambs had little to no effects on the majority of meat quality traits evaluated; moreover, 4% of YME inclusion negatively affected feed intake and meat quality traits.


Asunto(s)
Ilex paraguariensis , Carne Roja , Animales , Dieta/veterinaria , Carne , Metabolómica , Músculos , Extractos Vegetales , Carne Roja/análisis , Ovinos , Oveja Doméstica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA