Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 9: 387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29731716

RESUMEN

Introduction: Despite recent advances in critical care, sepsis remains a crucial cause of morbidity and mortality in intensive care units. Therefore, the identification of new therapeutic strategies is of great importance. Since ancient times, frankincense is used in traditional medicine for the treatment of chronic inflammatory disorders such as rheumatoid arthritis. Thus, the present study intends to evaluate if Casperome® (Casp), an orally bioavailable soy lecithin-based formulation of standardized frankincense extract, is able to ameliorate systemic effects and organ damages induced by severe systemic inflammation using a murine model of sepsis, i.e., intraperitoneal administration of lipopolysaccharides (LPS). Methods: Male 60-day-old mice were assigned to six treatment groups: (1) control, (2) LPS, (3) soy lecithin (blank lecithin without frankincense extract), (4) Casp, (5) soy lecithin plus LPS, or (6) Casp plus LPS. Soy lecithin and Casp were given 3 h prior to LPS treatment; 24 h after LPS administration, animals were sacrificed and health status and serum cytokine levels were evaluated. Additionally, parameters representing liver damage or liver function and indicating oxidative stress in different organs were determined. Furthermore, markers for apoptosis and immune cell redistribution were assessed by immunohistochemistry in liver and spleen. Results: LPS treatment caused a decrease in body temperature, blood glucose levels, liver glycogen content, and biotransformation capacity along with an increase in serum cytokine levels and oxidative stress in various organs. Additionally, apoptotic processes were increased in spleen besides a pronounced immune cell infiltration in both liver and spleen. Pretreatment with Casp significantly improved health status, blood glucose values, and body temperature of the animals, while serum levels of pro-inflammatory cytokines and oxidative stress in all organs tested were significantly diminished. Finally, apoptotic processes in spleen, liver glycogen loss, and immune cell infiltration in liver and spleen were distinctly reduced. Casp also appears to induce various cytochromeP450 isoforms, thus causing re-establishment of liver biotransformation capacity in LPS-treated mice. Conclusion: Casp displayed anti-inflammatory, anti-oxidative, and hepatoprotective effects. Thus, orally bioavailable frankincense extracts may serve as a new supportive treatment option in acute systemic inflammation and accompanied liver dysfunction.

2.
FASEB J ; 31(10): 4566-4577, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28687611

RESUMEN

Protein kinases, including the serine/threonine kinase Akt, mediate manifold bioactivities of vitamin A, although the mechanisms behind the sustained kinase activation are diffuse. To investigate the role of cellular lipids as targetable factors in Akt signaling, we combined mass spectrometry-based lipidomics with immunologic detection of Akt (Ser473) phosphorylation. A screening campaign revealed retinol (vitamin A alcohol) and all-trans retinoic acid (vitamin A acid) (RA) as hits that time-dependently (≥24 h) deplete phosphatidylcholine-bound polyunsaturated fatty acids (PUFA-PCs) from NIH-3T3 mouse fibroblasts while inducing Akt activation (EC50 ≈ 0.1-1 µM). Other mitogenic and stress-regulated kinases were hardly affected. Organized in a coregulated phospholipid subcluster, PUFA-PCs compensated for the RA-induced loss of cellular PUFA-PCs and diminished Akt activation when supplemented. The counter-regulation of phospholipids and Akt by RA was mimicked by knockdown of lysophosphatidylcholine acyltransferase-3 or the selective retinoid X receptor (RXR) agonist bexarotene and prevented by the selective RXR antagonist Hx531. Treatment of mice with retinol decreased the tissue ratio of PUFA-PC and enhanced basal Akt activation preferentially in brain, which was attributed to astrocytes in dissociated cortical cultures. Together, our findings show that RA regulates the long-term activation of Akt by changes in the phospholipid composition.-Pein, H., Koeberle, S. C., Voelkel, M., Schneider, F., Rossi, A., Thürmer, M., Loeser, K., Sautebin, L., Morrison, H., Werz, O., Koeberle, A. Vitamin A regulates Akt signaling through the phospholipid fatty acid composition.


Asunto(s)
Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología , Vitamina A/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Fosforilación , Receptores X Retinoide/metabolismo , Tretinoina/metabolismo , Vitamina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA