Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2791: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532087

RESUMEN

This section describes a set of methods for callus induction followed by the successful regeneration of whole plants and obtaining a culture of transgenic hairy roots from buckwheat plants (Fagopyrum esculentum Moench.). Callus induction and regeneration are key steps for many biotechnological, genetic, and breeding approaches, such as genetic modification, production of biologically active compounds, and propagation of valuable germplasm. Induction of hairy roots using Agrobacterium rhizogenes is also an important tool for functional gene research and plant genome modification. While many efforts were invested into the development of the corresponding protocols, they are not equally efficient for different cultivars. Here, we have tested and optimized the protocols of callus induction, regeneration, and transformation using A. rhizogenes for a set of cultivars of F. esculentum, including wild ancestor of cultivated buckwheat F. esculentum ssp. ancestrale and a self-pollinated accession KK8. The optimal medium for callus induction is Murashige-Skoog basal medium with 3% sucrose which includes hormones 2,4-dichlorophenoxyacetic acid 2 mg/L and kinetin 2 mg/L; for shoot initiation 6-benzylaminopurine 2 mg/L, kinetin 0.2 mg/L, and indole-3-acetic acid 0.2 mg/L; for shoot multiplication 6-benzylaminopurine 3 mg/L and indole-3-acetic acid 0.2 mg/L; and for root initiation half-strength Murashige-Skoog medium with 1.5% sucrose and indole-3-butyric acid 1 mg/L. A. rhizogenes R1000 strain proved to be the most efficient in inducing hairy roots in buckwheat and T-DNA transfer from binary vectors. Seedling explants cut at the root area and immersed in agrobacterium suspension, as well as prickling the cotyledonary area with agrobacteria dipped syringe needle, are the most labor-effective methods of infection, allowing to initiate hairy root growth in 100% of explants.


Asunto(s)
Compuestos de Bencilo , Fagopyrum , Purinas , Cinetina , Raíces de Plantas/genética , Fitomejoramiento , Sacarosa
2.
Gene ; 726: 144154, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31589962

RESUMEN

In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.


Asunto(s)
Allium/genética , Reordenamiento Génico/genética , Genes de Plantas/genética , Cebollas/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , Evolución Molecular , Genoma del Cloroplasto/genética , Genoma de Planta/genética , Filogenia , Hojas de la Planta/genética , Seudogenes/genética , Análisis de Secuencia de ADN/métodos
3.
Genes (Basel) ; 10(2)2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736447

RESUMEN

Plants are widely used for food and beverage preparation, most often in the form of complex mixtures of dried and ground parts, such as teas, spices or herbal medicines. Quality control of such products is important due to the potential health risks from the presence of unlabelled components or absence of claimed ones. A promising approach to analyse such products is DNA metabarcoding due to its high resolution and sensitivity. However, this method's application in food analysis requires several methodology optimizations in DNA extraction, amplification and library preparation. In this study, we present such optimizations. The most important methodological outcomes are the following: 1) the DNA extraction method greatly influences amplification success; 2) the main problem for the application of metabarcoding is DNA purity, not integrity or quantity; and 3) the "non-amplifiable" samples can be amplified with polymerases resistant to inhibitors. Using this optimized workflow, we analysed a broad set of plant products (teas, spices and herbal remedies) using two NGS platforms. The analysis revealed the problem of both the presence of extraneous components and the absence of labelled ones. Notably, for teas, no correlation was found between the price and either the absence of labelled components or presence of unlabelled ones; for spices, a negative correlation was found between the price and presence of unlabelled components.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Análisis de los Alimentos/métodos , Código de Barras del ADN Taxonómico/normas , ADN de Plantas/análisis , Análisis de los Alimentos/normas , Secuencias Repetitivas de Ácidos Nucleicos , Especias/normas , Té/genética , Té/normas
4.
J Exp Bot ; 69(8): 1955-1966, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29394372

RESUMEN

Jasmonates are plant hormones that induce the accumulation of many secondary metabolites, such as rutin in buckwheat, via regulation of jasmonate-responsive transcription factors. Here, we report on the identification of a clade of jasmonate-responsive subgroup 4 MYB transcription factors, FtMYB13, FtMYB14, FtMYB15, and FtMYB16, which directly repress rutin biosynthesis in Fagopyrum tataricum. Immunoblot analysis showed that FtMYB13, FtMYB14, and FtMYB15 could be degraded via the 26S proteasome in the COI1-dependent jasmonate signaling pathway, and that this degradation is due to the SID motif in their C-terminus. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that FtMYB13, FtMYB14, and FtMYB15 interact with the importin protein Sensitive to ABA and Drought 2 (FtSAD2) in stem and inflorescence. Furthermore, the key repressor of jasmonate signaling FtJAZ1 specifically interacts with FtMYB13. Point mutation analysis showed that the conserved Asp residue of the SID domain contributes to mediating protein-protein interaction. Protoplast transient activation assays demonstrated that FtMYB13, FtMYB14, and FtMYB15 directly repress phenylalanine ammonia lyase (FtPAL) gene expression, and FtSAD2 and FtJAZ1 significantly promote the repressing activity of FtMYBs. These findings may ultimately be promising for further engineering of plant secondary metabolism.


Asunto(s)
Ciclopentanos/metabolismo , Fagopyrum/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Rutina/biosíntesis , Factores de Transcripción/metabolismo , Fagopyrum/química , Fagopyrum/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética
5.
New Phytol ; 216(3): 814-828, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28722263

RESUMEN

Little is known about the molecular mechanism of the R2R3-MYB transcriptional repressors involved in plant phenylpropanoid metabolism. Here, we describe one R2R3-type MYB repressor, FtMYB11 from Fagopyrum tataricum. It contains the SID-like motif GGDFNFDL and it is regulated by both the importin protein 'Sensitive to ABA and Drought 2' (SAD2) and the jasmonates signalling cascade repressor JAZ protein. Yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that FtMYB11 interacts with SAD2 and FtJAZ1. Protoplast transactivation assays demonstrated that FtMYB11 acts synergistically with FtSAD2 or FtJAZ1 and directly represses its target genes via the MYB-core element AATAGTT. Changing the Asp122 residue to Asn in the SID-like motif results in cytoplasmic localization of FtMYB11 because of loss of interaction with SAD2, while changing the Asp126 residue to Asn results in the loss of interaction with FtJAZ1. Overexpression of FtMYB11or FtMYB11D126N in F. tataricum hairy roots resulted in reduced accumulation of rutin, while overexpression of FtMYB11D122N in hairy roots did not lead to such a change. The results indicate that FtMYB11 acts as a regulator via interacting with FtSAD2 or FtJAZ1 to repress phenylpropanoid biosynthesis, and this repression depends on two conserved Asp residues of its SID-like motif.


Asunto(s)
Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Citoplasma/metabolismo , Fagopyrum/genética , Prueba de Complementación Genética , Mutación , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Rutina/biosíntesis , Rutina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS One ; 6(5): e19434, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21589908

RESUMEN

Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications--geNorm, NormFinder and BestKeeper--were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species.


Asunto(s)
Fagopyrum/genética , Perfilación de la Expresión Génica , Genes de Plantas , Secuencia de Bases , Cartilla de ADN , Estudio de Asociación del Genoma Completo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
BMC Genomics ; 12: 30, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21232141

RESUMEN

BACKGROUND: Transcriptome sequencing data has become an integral component of modern genetics, genomics and evolutionary biology. However, despite advances in the technologies of DNA sequencing, such data are lacking for many groups of living organisms, in particular, many plant taxa. We present here the results of transcriptome sequencing for two closely related plant species. These species, Fagopyrum esculentum and F. tataricum, belong to the order Caryophyllales--a large group of flowering plants with uncertain evolutionary relationships. F. esculentum (common buckwheat) is also an important food crop. Despite these practical and evolutionary considerations Fagopyrum species have not been the subject of large-scale sequencing projects. RESULTS: Normalized cDNA corresponding to genes expressed in flowers and inflorescences of F. esculentum and F. tataricum was sequenced using the 454 pyrosequencing technology. This resulted in 267 (for F. esculentum) and 229 (F. tataricum) thousands of reads with average length of 341-349 nucleotides. De novo assembly of the reads produced about 25 thousands of contigs for each species, with 7.5-8.2× coverage. Comparative analysis of two transcriptomes demonstrated their overall similarity but also revealed genes that are presumably differentially expressed. Among them are retrotransposon genes and genes involved in sugar biosynthesis and metabolism. Thirteen single-copy genes were used for phylogenetic analysis; the resulting trees are largely consistent with those inferred from multigenic plastid datasets. The sister relationships of the Caryophyllales and asterids now gained high support from nuclear gene sequences. CONCLUSIONS: 454 transcriptome sequencing and de novo assembly was performed for two congeneric flowering plant species, F. esculentum and F. tataricum. As a result, a large set of cDNA sequences that represent orthologs of known plant genes as well as potential new genes was generated.


Asunto(s)
Fagopyrum/genética , Flores/genética , Perfilación de la Expresión Génica , Fagopyrum/clasificación , Anotación de Secuencia Molecular , ARN de Planta/genética , Análisis de Secuencia de ADN
8.
BMC Plant Biol ; 8: 59, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18492277

RESUMEN

BACKGROUND: Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. RESULTS: We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. CONCLUSION: Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non-core Caryophyllales supports the sister relationship between Caryophyllales and asterids.


Asunto(s)
Cloroplastos/genética , Fagopyrum/genética , Genoma de Planta/genética , Genómica/métodos , Filogenia , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , Fagopyrum/clasificación , Orden Génico , Genes de Plantas/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA