Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 42(1): 495-508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36974974

RESUMEN

The nosocomial infection outbreak caused by Pseudomonas aeruginosa remains a public health concern. Multi-drug resistant (MDR) strains of P. aeruginosa are rapidly spreading leading to a huge mortality rate because of the unavailability of promising antimicrobials. MurG glycotransferase [UDP-N-acetylglucosamine-N-acetylmuramyl (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase] is located at the plasma membrane and plays a key role in murein (peptidoglycan) biosynthesis in bacteria. Since MurG is required for bacterial cell wall synthesis and is non-homologous to Homo sapiens; it can be a potential target for the antagonist to treat P. aeruginosa infection. The discovery of high-resolution crystal structure of P. aeruginosa MurG offers an opportunity for the computational identification of its prospective inhibitors. Therefore, in the present study, the crystal structure of MurG (PDB ID: 3S2U) from P. aeruginosa was selected, and computational docking analyses were performed to search for functional inhibitors of MurG. IMPPAT (Indian medicinal plants, phytochemicals and therapeutic) phytomolecule database was screened by computational methods with MurG catalytic site. Docking results identified Theobromine (-8.881 kcal/mol), demethoxycurcumin (-8.850 kcal/mol), 2-alpha-hydroxycostic acid (-8.791 kcal/mol), aurantiamide (-8.779 kcal/mol) and petasiphenol (-8.685 kcal/mol) as a potential inhibitor of the MurG activity. Further, theobromine and demethoxycurcumin were subjected to MDS (molecular dynamics simulation) and free energy (MM/GBSA) analysis to comprehend the physiological state and structural stability of MurG-phytomolecules complexes. The outcomes suggested that these two phytomolecules could act as most favorable natural hit compounds for impeding the enzymatic action of MurG in P. aeruginosa, and thus it needs further validation by both in vitro and in vivo analysis. HIGHLIGHTSThe top phytomolecules such as theobromine, demethoxycurcumin, 2-alpha-hydroxycostic acid, aurantiamide and petasiphenol displayed promising binding with MurG catalytic domain.MurG complexed with theobromine and demethoxycurcumin showed the best interaction and stable by MD simulation at 100 ns.The outcome of MurG binding phytomolecules has expanded the possibility of hit phytomolecules validation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Infección Hospitalaria , Pseudomonas aeruginosa , Humanos , Teobromina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
2.
Comput Biol Chem ; 106: 107912, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454399

RESUMEN

COVID-19 shook the world during the pandemic, where the climax it reached was vaccine manufacturing at an unfathomable pace. Alternative promising solutions to prevent infection from SARS-CoV-2 and its variants will remain crucial in the years to come. Due to its key role in viral replication, the major protease (Mpro) enzyme of SARS-CoV-2 can be an attractive therapeutic target. In the present work, natural terpenoids from mangrove medicinal plant Xylocarpus moluccensis (Lam.) M. Roem. were screened using computational methods for inhibition of Mpro protein. Out of sixty-seven terpenoids, Angolensic acid methyl ester, Moluccensin V, Thaixylomolin F, Godavarin J, and Xylomexicanolide A were shortlisted based on their docking scores and interaction affinities (- 13.502 to - 15.52 kcal/mol). The efficacy was validated by the 100 ns molecular dynamics study. Lead terpenoids were within the acceptable range of RMSD and RMSF with a mean value of 2.5 Å and 1.5 Å, respectively indicating that they bound tightly within Mpro and there was minimal fluctuation and stability of Mpro upon binding of these terpenoids. The utmost favorable binding strengths as calculated by MM-GBSA, were of Angolensic acid methyl ester and Moluccensin V with binding free energies (ΔGbind) of - 39.084, and - 43.160 kcal/mol, respectively. The terpenoids showed no violations in terms of Drug Likeliness and ADMET predictions. Overall, the findings indicate that Angolensic acid methyl ester and Moluccensin V are effective terpenoids having strong binding interaction with Mpro protein, which must be tested in vitro as an effective anti-SARS-CoV-2 drug.


Asunto(s)
Antivirales , Magnoliopsida , Terpenos , Simulación por Computador , Magnoliopsida/química , Terpenos/química , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Termodinámica
3.
J Biomol Struct Dyn ; 41(7): 2698-2712, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35156902

RESUMEN

Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Acinetobacter baumannii , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Acinetobacter baumannii/metabolismo , Nordefrin/metabolismo , Desarrollo de Medicamentos
4.
Comput Biol Med ; 147: 105679, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35667152

RESUMEN

Severe acute respiratory syndrome coronavirus 2 was originally identified in Wuhan city of China in December 2019 and it spread rapidly throughout the globe, causing a threat to human life. Since targeted therapies are deficient, scientists all over the world have an opportunity to develop novel drug therapies to combat COVID-19. After the declaration of a global medical emergency, it was established that the Food and Drug Administration (FDA) could permit the use of emergency testing, treatments, and vaccines to decrease suffering, and loss of life, and restore the nation's health and security. The FDA has approved the use of remdesivir and its analogs as an antiviral medication, to treat COVID-19. The primary protease of SARS-CoV-2, which has the potential to regulate coronavirus proliferation, has been a viable target for the discovery of medicines against SARS-CoV-2. The present research deals with the in silico technique to screen phytocompounds from a traditional medicinal plant, Bauhinia variegata for potential inhibitors of the SARS-CoV-2 main protease. Dried leaves of the plant B. variegata were used to prepare aqueous and methanol extract and the constituents were analyzed using the GC-MS technique. A total of 57 compounds were retrieved from the aqueous and methanol extract analysis. Among these, three lead compounds (2,5 dimethyl 1-H Pyrrole, 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide, and Benzonitrile m phenethyl) were shown to have the highest binding affinity (-5.719 to -5.580 kcal/mol) towards SARS-CoV-2 Mpro. The post MD simulation results also revealed the favorable confirmation and stability of the selected lead compounds with Mpro as per trajectory analysis. The Prime MM/GBSA binding free energy supports this finding, the top lead compound 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide showed high binding free energy (-64.377 ± 5.24 kcal/mol) towards Mpro which reflects the binding stability of the molecule with Mpro. The binding free energy of the complexes was strongly influenced by His, Gln, and Glu residues. All of the molecules chosen are found to have strong pharmacokinetic characteristics and show drug-likeness properties. The lead compounds present acute toxicity (LD50) values ranging from 670 mg/kg to 2500 mg/kg; with toxicity classifications of 4 and 5 classes. Thus, these compounds could behave as probable lead candidates for treatment against SARS-CoV-2. However further in vitro and in vivo studies are required for the development of medication against SARS-CoV-2.


Asunto(s)
Bauhinia , Tratamiento Farmacológico de COVID-19 , Bauhinia/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metanol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Proteínas no Estructurales Virales/química
5.
Bioinform Biol Insights ; 15: 11779322211027403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248355

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from Phyllanthus emblica and Aegel marmelos within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (-23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (-19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.

6.
Biomed Pharmacother ; 91: 880-889, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28511341

RESUMEN

Myocardial infarction (MI) is a leading major health problem with increased morbidity and mortality worldwide. The present study investigates isoproterenol (ISO) induced MI and the beneficial role of Aegle marmelos fruit extract (AMFE) in rats. Our results indicated the significant augmentation of plasma nitric oxide (NOx) levels, C-reactive protein (CRP), homocysteine, apolipoprotein B (apo-B), cardiac tissue lipid peroxidation and liver 3-hydroxy-3 methyl glutaryl CoA (HMG-CoA) reductase activity in ISO treated rats (85mg/kg b.wt) with a concomitant decrease in plasma apolipoprotein A1 (apo-A), lipase activity, paraoxonase-1 activity and cardiac tissue taurine levels when compared with controls. However, pretreatment of ISO administered rats with AMFE (150mg/kg b.wt/day for 45 days) markedly brought the observed alterations toward near normal level indicating its protective role against MI. Further, we have extended our studies to study the interaction of important phytocompounds, marmesin, marmin, umbelliferone and impertonin, present in AMFE with key enzymes, HMG-CoA reductase, iNOS, lipoprotein lipase and paraoxonase using AutoDock4. Molecular docking analysis indicated that HMG-CoA reductase, inducible nitric oxide synthase (iNOS) and lipoprotein lipase formed a strong enzyme ligand complex with impertonin. While the marmesin showed strong interaction with paraoxonase enzyme. In conclusion, our results suggest that AMFE acts as a strong protective agent against ISO-induced MI, and the bioactive compounds are responsible for this protective action which is confirmed by molecular docking studies.


Asunto(s)
Aegle/química , Cardiotónicos/uso terapéutico , Frutas/química , Simulación del Acoplamiento Molecular , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Cardiotónicos/química , Cardiotónicos/farmacología , Isoproterenol , Masculino , Infarto del Miocardio/sangre , Infarto del Miocardio/enzimología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA