Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
JVS Vasc Sci ; 4: 100095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36852171

RESUMEN

Objective: Hydrogen sulfide is a proangiogenic gas produced primarily by the transsulfuration enzyme cystathionine-γ-lyase (CGL). CGL-dependent hydrogen sulfide production is required for neovascularization in models of peripheral arterial disease. However, the benefits of increasing endogenous CGL and its mechanism of action have not yet been elucidated. Methods: Male whole body CGL-overexpressing transgenic (CGLTg) mice and wild-type (WT) littermates (C57BL/6J) were subjected to the hindlimb ischemia model (age, 10-12 weeks). Functional recovery was assessed via the treadmill exercise endurance test. Leg perfusion was measured by laser Doppler imaging and vascular endothelial-cadherin immunostaining. To examine the angiogenic potential, aortic ring sprouting assay and postnatal mouse retinal vasculature development studies were performed. Finally, comparative metabolomics analysis, oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH) analysis, and quantitative real-time polymerase chain reaction were performed on CGLWT and CGLTg gastrocnemius muscle. Results: The restoration of blood flow occurred more rapidly in CGLTg mice. Compared with the CGLWT mice, the median ± standard deviation running distance and time were increased for the CGLTg mice after femoral artery ligation (159 ± 53 m vs 291 ± 74 m [P < .005] and 17 ± 4 minutes vs 27 ± 5 minutes [P < .05], respectively). Consistently, in the CGLTg ischemic gastrocnemius muscle, the capillary density was increased fourfold (0.05 ± 0.02 vs 0.20 ± 0.12; P < .005). Ex vivo, the endothelial cell (EC) sprouting length was increased in aorta isolated from CGLTg mice, especially when cultured in VEGFA (vascular endothelial growth factor A)-only media (63 ± 2 pixels vs 146 ± 52 pixels; P < .05). Metabolomics analysis demonstrated a higher level of niacinamide, a precursor of NAD+/NADH in the muscle of CGLTg mice (61.4 × 106 ± 5.9 × 106 vs 72.4 ± 7.7 × 106 area under the curve; P < .05). Similarly, the NAD+ salvage pathway gene expression was increased in CGLTg gastrocnemius muscle. Finally, CGL overexpression or supplementation with the NAD+ precursor nicotinamide mononucleotide improved EC migration in vitro (wound closure: control, 35% ± 9%; CGL, 55% ± 11%; nicotinamide mononucleotide, 42% ± 13%; P < .05). Conclusions: Our results have demonstrated that CGL overexpression improves the neovascularization of skeletal muscle on hindlimb ischemia. These effects correlated with changes in the NAD pathway, which improved EC migration.

2.
Magn Reson Med ; 89(1): 40-53, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36161342

RESUMEN

PURPOSE: We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 ( 31 $$ {}^{31} $$ P) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the performance of the two approaches, are compared in this work. THEORY AND METHODS: Convolutional neural network architectures have been proposed for the analysis and quantification of 31 $$ {}^{31} $$ P-spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three-dimensional 31 $$ {}^{31} $$ P-magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P-SPAWNN or traditional least-square fitting techniques. RESULTS: The presented experiment has demonstrated both the reliability and accuracy of 31P-SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent precision. Processing time using 31P-SPAWNN can be further shortened up to two orders of magnitude. CONCLUSION: The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting.


Asunto(s)
Inteligencia Artificial , Fósforo , Humanos , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Redes Neurales de la Computación
3.
Nutrients ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406143

RESUMEN

Radiation therapy damages and depletes total bone marrow (BM) cellularity, compromising safety and limiting effective dosing. Aging also strains total BM and BM hematopoietic stem and progenitor cell (HSPC) renewal and function, resulting in multi-system defects. Interventions that preserve BM and BM HSPC homeostasis thus have potential clinical significance. Here, we report that 50% calorie restriction (CR) for 7-days or fasting for 3-days prior to irradiation improved mouse BM regrowth in the days and weeks post irradiation. Specifically, one week of 50% CR ameliorated loss of total BM cellularity post irradiation compared to ad libitum-fed controls. CR-mediated BM protection was abrogated by dietary sulfur amino acid (i.e., cysteine, methionine) supplementation or pharmacological inhibition of sulfur amino acid metabolizing and hydrogen sulfide (H2S) producing enzymes. Up to 2-fold increased proliferative capacity of ex vivo-irradiated BM isolated from food restricted mice relative to control mice indicates cell autonomy of the protective effect. Pretreatment with H2S in vitro was sufficient to preserve proliferative capacity by over 50% compared to non-treated cells in ex vivo-irradiated BM and BM HSPCs. The exogenous addition of H2S inhibited Ten eleven translocation 2 (TET2) activity in vitro, thus providing a potential mechanism of action. Short-term CR or fasting therefore offers BM radioprotection and promotes regrowth in part via altered sulfur amino acid metabolism and H2S generation, with translational implications for radiation treatment and aging.


Asunto(s)
Sulfuro de Hidrógeno , Traumatismos por Radiación , Animales , Médula Ósea/metabolismo , Restricción Calórica , Suplementos Dietéticos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Metionina/farmacología , Ratones , Ratones Endogámicos C57BL , Radiación Ionizante
4.
Nephrol Dial Transplant ; 36(1): 60-68, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33099633

RESUMEN

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous coenzyme involved in electron transport and a co-substrate for sirtuin function. NAD+ deficiency has been demonstrated in the context of acute kidney injury (AKI). METHODS: We studied the expression of key NAD+ biosynthesis enzymes in kidney biopsies from human allograft patients and patients with chronic kidney disease (CKD) at different stages. We used ischaemia-reperfusion injury (IRI) and cisplatin injection to model AKI, urinary tract obstruction [unilateral ureteral obstruction (UUO)] and tubulointerstitial fibrosis induced by proteinuria to investigate CKD in mice. We assessed the effect of nicotinamide riboside (NR) supplementation on AKI and CKD in animal models. RESULTS: RNA sequencing analysis of human kidney allograft biopsies during the reperfusion phase showed that the NAD+de novo synthesis is impaired in the immediate post-transplantation period, whereas the salvage pathway is stimulated. This decrease in de novo NAD+ synthesis was confirmed in two mouse models of IRI where NR supplementation prevented plasma urea and creatinine elevation and tubular injury. In human biopsies from CKD patients, the NAD+de novo synthesis pathway was impaired according to CKD stage, with better preservation of the salvage pathway. Similar alterations in gene expression were observed in mice with UUO or chronic proteinuric glomerular disease. NR supplementation did not prevent CKD progression, in contrast to its efficacy in AKI. CONCLUSION: Impairment of NAD+ synthesis is a hallmark of AKI and CKD. NR supplementation is beneficial in ischaemic AKI but not in CKD models.


Asunto(s)
Lesión Renal Aguda/patología , Modelos Animales de Enfermedad , Niacinamida/análogos & derivados , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Niacinamida/deficiencia , Compuestos de Piridinio , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
5.
Cell ; 160(1-2): 132-44, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25542313

RESUMEN

Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK:


Asunto(s)
Dieta , Sulfuro de Hidrógeno/metabolismo , Animales , Evolución Biológica , Caenorhabditis elegans/fisiología , Restricción Calórica , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Drosophila melanogaster/fisiología , Femenino , Riñón/irrigación sanguínea , Riñón/lesiones , Esperanza de Vida , Hígado/irrigación sanguínea , Hígado/lesiones , Masculino , Metionina/metabolismo , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión , Transducción de Señal , Estrés Fisiológico , Transcriptoma , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA