RESUMEN
OBJECTIVES: To test the hypothesis that neonatal supplementation with lutein in the first hours of life reduces neonatal oxidative stress (OS) in the immediate postpartum period. METHODS: A randomized controlled, double-blinded clinical trial was conducted among 150 newborns divided into control group, not supplemented (n = 47), and test group, supplemented with lutein on the first day postpartum (n = 103). Blood Samples were collected at birth from cord and at 48 hrs postpartum while routine neonatal metabolic screenings were taking place. Total hydroperoxide (TH), advanced oxidation protein products (AOPP), and biological antioxidant potential (BAP) were measured by spectrophotometry and data were analyzed by Wilcoxon rank sum test and by multivariate logistic regression analysis. RESULTS: Before lutein supplementation, the mean blood concentrations of AOPP, TH, and BAP were 36.10 umol/L, 156.75 mmol/H2O2, and 2361.04 umol/L in the test group. After lutein supplementation, significantly higher BAP increment (0.17 ± 0.22 versus 0.06 versus ± 0.46) and lower TH increment (0.46 ± 0.54 versus 0.34 ± 0.52) were observed in the test group compared to controls. CONCLUSION: Neonatal supplementation with lutein in the first hours of life increases BAP and reduces TH in supplemented babies compared to those untreated. The generation of free radical-induced damage at birth is reduced by lutein. This trial is registered with ClinicalTrials.gov NCT02068807.
Asunto(s)
Luteína/farmacología , Estrés Oxidativo/efectos de los fármacos , Productos Avanzados de Oxidación de Proteínas/sangre , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/metabolismo , Área Bajo la Curva , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Peróxido de Hidrógeno/sangre , Recién Nacido , Peroxidación de Lípido/efectos de los fármacos , Modelos Logísticos , Masculino , Curva ROC , EspectrofotometríaRESUMEN
OBJECTIVE: Oxidative stress (OS) plays a key role in perinatal brain damage. The aim of this study is to evaluate the effectiveness of melatonin as a neuroprotective drug by investigating the influence of melatonin on OS and inflammation biomarkers in an animal model of cerebral hypoxia-ischemia. METHODS: Five minutes after hypoxic-ischemic (HI) injury melatonin was administered to 28 rats (HI-Mel group). At the same time, 28 hypoxic-ischemic rats were vehicle-treated (V-HI group). Five rats were used as sham operated controls (CTL). OS biomarkers: isoprostanes (IsoPs), neuroprostanes (NPs) and neurofurans (NFs), and microglial activation markers (glial fibrillary acidic protein [GFAP] and monoclonal antirat CD68 [ED1]) were measured in the cerebral cortex of the two lobes. RESULTS: A significant increase of IsoPs on the left lobe was observed in V-HI after 1 hour (h) from HI injury (p < 0.001); a significant increase of NPs on both side (p < 0.05) and a significant increase of NFs on the left (p < 0.05) were also observed in V-HI after 24 h. A significant increase of IsoPs on the left (p < 0.05) and of NPs on both lobes (p < 0.05) were observed in HI-Mel after 48 h. The ED1 and GFAP expression was lower in the HI-Mel brain tissue. CONCLUSIONS: Melatonin reduces OS and inflammatory cells recruitment and glial cells activation in cerebral cortex after neonatal HI damage. These results lay the groundwork for future clinical studies in infants.