Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38437631

RESUMEN

This study examined the impact of maternal protein supplementation during mid-gestation on offspring, considering potential sex-related effects. Forty-three pregnant purebred Tabapuã beef cows (20 female and 23 male fetuses) were collectively managed in a pasture until 100 d of gestation. From 100 to 200 d of gestation, they were randomly assigned to the restricted group [(RES) - basal diet (75% corn silage + 25% sugar cane bagasse + mineral mixture); n = 24] or control group [(CON) - same basal diet + based-plant supplement [40% of crude protein, 3.5 g/kg of body weight (BW); n = 19]. From 200 d of gestation until parturition, all cows were equally fed corn silage and mineral mixture. During the cow-calf phase, cows and their calves were maintained in a pasture area. After weaning, calves were individually housed and evaluated during the backgrounding (255 to 320 d), growing 1 (321 to 381 d), and growing 2 (382 to 445 d) phases. Offspring's blood samples were collected at 210 and 445 d of age. Samples of skeletal muscle tissue were collected through biopsies at 7, 30, and 445 d of age. Muscle tissue samples were subjected to reverse-transcription quantitative polymerase chain reaction analysis. Prenatal treatment and offspring's sex (when pertinent) were considered fixed effects. The significance level was set at 5%. At mid-gestation, cows supplemented with protein reached 98% and 92% of their protein and energy requirements, while nonsupplemented cows attained only 30% and 50% of these requirements, respectively. The RES offspring were lighter at birth (27 vs. 31 kg), weaning (197 vs. 214 kg), and 445 d of age (398 vs. 429 kg) (P ≤ 0.05). The CON calves had greater (P < 0.05) morphometric measurements overall. The CON offspring had ~26% greater muscle fiber area (P ≤ 0.01). There was a trend (P = 0.06) for a greater Mechanistic target of rapamycin kinase mRNA expression in the Longissimus thoracis in the CON group at 7 d of age. The Myogenic differentiation 1 expression was greater (P = 0.02) in RES-females. Upregulation of Carnitine palmitoyltransferase 2 was observed in RES offspring at 445 d (P = 0.04). Expression of Fatty acid binding protein 4 (P < 0.001), Peroxisome proliferator-activated receptor gamma (P < 0.001), and Stearoyl-Coenzyme A desaturase (P < 0.001) was upregulated in CON-females. Therefore, protein supplementation during gestation enhances offspring growth and promotes favorable responses to lipogenesis, particularly in females.


In tropical conditions, beef cows on pasture often experience protein restriction during mid-to-late gestation, potentially impacting offspring development negatively. To address this, we investigated the effects of strategic protein supplementation for pregnant beef cows fed low-quality forage during mid-gestation on the postnatal growth trajectory of their offspring. The supplementation program, implemented during mid-gestation, increased dry matter intake by addressing nitrogen deficiency in the rumen, resulting in meeting 98% and 92% of protein and energy requirements in supplemented cows. In contrast, nonsupplemented cows met only 30% and 50% of these requirements, respectively. Consequently, protein supplementation positively influenced the postnatal growth trajectory of the offspring, attributed to beneficial changes in secondary myogenesis and hypertrophy processes. Supplementing cows with crude protein also stimulated lipogenesis, potentially contributing to intramuscular fat deposition, particularly in females. Therefore, this study emphasizes the importance of nutritional interventions for pregnant beef cows fed low-quality forage.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Animales , Bovinos , Femenino , Embarazo , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Minerales , Músculo Esquelético , Masculino
2.
J Agric Food Chem ; 72(2): 983-998, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38189273

RESUMEN

Microbial transplantation in early life was a strategy to optimize the health and performance of livestock animals. This study aimed to investigate the effect of active ruminal solids microorganism supplementation on newborn lamb gut microbiota and serum metabolism. Twenty-four Youzhou dark newborn lambs were randomly divided into three groups: (1) newborn lambs fed with sterilized goat milk inoculated with sterilized normal saline (CON), supernatant from ruminal solids (SRS), or autoclaved supernatant from ruminal solids (ASRS). Results showed that SRS increased gut bacterial richness and community, downregulating the Firmicutes/Bacteroidetes ratio, and increased the abundance of some probiotics (Bacteroidetes, Spirochaetota, and Fibrobacterota), while reducing the abundance of Fusobacteriota, compared to the CON group. SRS also improved the plasma metabolic function, such as arachidonic acid metabolism, primary bile acid biosynthesis, and tryptophan metabolism and then actively promoted the levels of ALP and HLD. Our study indicated that inoculation with active ruminal solids significantly affected the intestinal microbial communities and metabolic characteristics, and these changes can improve the growing health of the newborn lamb. These findings provided an experimental and theoretical basis for the application of ruminal solid-attached microorganisms in the nutritional management of lambs reared for human consumption.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ovinos , Animales Recién Nacidos , Dieta/veterinaria , Cabras/metabolismo , Oveja Doméstica , Bacterias/genética , Metaboloma , Rumen/metabolismo , Alimentación Animal/análisis
3.
J Dairy Sci ; 106(12): 9868-9878, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678795

RESUMEN

Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (∼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.


Asunto(s)
Enfermedades de los Bovinos , Deficiencia de Colina , Femenino , Bovinos , Animales , Deficiencia de Colina/metabolismo , Deficiencia de Colina/veterinaria , Gotas Lipídicas/metabolismo , Colina/farmacología , Colina/metabolismo , Lactancia/fisiología , Hígado/metabolismo , Fosfolípidos/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Rumen/metabolismo , Leche/química , Enfermedades de los Bovinos/metabolismo
4.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37721866

RESUMEN

Feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during periods of metabolic stress is beneficial to the health of dairy cows partially through its effect on the gut microbiota. Whether SCFP alters the ileal microbiota in lactating cows during intestinal challenges induced by feed restriction (FR) is not known. We used 16S rRNA sequencing to assess if feeding SCFP during FR to induce gut barrier dysfunction alters microbiota profiles in the ileum. The mRNA abundance of key genes associated with tissue structures and immunity was also detected. Multiparous cows (97.1 ±â€…7.6 days in milk (DIM); n = 7 per treatment) fed a control diet or the control plus 19 g/d NutriTek for 9 wk were subjected to an FR challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR. DNA extracted from ileal digesta was subjected to PacBio Full-Length 16S rRNA gene sequencing. High-quality amplicon sequence analyses were performed with Targeted Amplicon Diversity Analysis and MicrobiomeAnalyst. Functional analysis was performed and analyzed using PICRUSt and STAMP. Feeding SCFP did not (P > 0.05) alter dry matter intake, milk yield, or milk components during FR. In addition, SCFP supplementation tended (P = 0.07) to increase the relative abundance of Proteobacteria and Bifidobacterium animalis. Compared with controls, feeding SCFP increased the relative abundance of Lactobacillales (P = 0.03). Gluconokinase, oligosaccharide reducing-end xylanase, and 3-hydroxy acid dehydrogenase were among the enzymes overrepresented (P < 0.05) in response to feeding SCFP. Cows fed SCFP had a lower representation of adenosylcobalamin biosynthesis I (early cobalt insertion) and pyrimidine deoxyribonucleotides de novo biosynthesis III (P < 0.05). Subsets of the Firmicutes genus, Bacteroidota phylum, and Treponema genus were correlated with the mRNA abundance of genes associated with ileal integrity (GCNT3, GALNT5, B3GNT3, FN1, ITGA2, LAMB2) and inflammation (AOX1, GPX8, CXCL12, CXCL14, CCL4, SAA3). Our data indicated that the moderate FR induced dysfunction of the ileal microbiome, but feeding SCFP increased the abundance of some beneficial gut probiotic bacteria and other species related to tissue structures and immunity.


Stressors, including limited access to feed, heat stress, transportation, and disease are factors that reduce integrity of the gut epithelial barrier in livestock. Feeding Saccharomyces cerevisiae fermentation products (SCFP) mitigated immunological, aflatoxin, and subclinical mastitis challenges, heat stress, and grain-based subacute ruminal acidosis indicating it also could alleviate gut damage. Microbiota profiling of ileal epithelium using 16S rRNA sequencing and bioinformatics revealed that Lactobacillales and Animalis abundance was greater in cows fed SCFP versus controls during a 5-d feed restriction to induce intestinal dysfunction. Some genera of Firmicutes, Bacteroidota phylum, and Treponema genus were correlated with mRNA abundance of genes associated with integrity and inflammation of ileal epithelium. Thus, feeding SCFP can increase the abundance of beneficial bacteria during a gut challenge.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal , Femenino , Bovinos , Animales , Suplementos Dietéticos/análisis , Lactancia/fisiología , Saccharomyces cerevisiae/metabolismo , Fermentación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Dieta/veterinaria , Leche/metabolismo , ARN Mensajero/metabolismo , Alimentación Animal/análisis , Rumen/metabolismo
5.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37616596

RESUMEN

Stressors such as lack of access to feed, hot temperatures, transportation, and pen changes can cause impairment of ruminal and intestinal barrier function, also known as "leaky gut". Despite the known benefits of some nutritional approaches during periods of stress, little is understood regarding the underlying mechanisms, especially in dairy cows. We evaluated the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) on the ileal transcriptome in response to feed restriction (FR), an established model to induce intestinal barrier dysfunction. Multiparous cows [97.1 ±â€…7.6 days in milk (DIM); n = 5/group] fed a control diet or control plus 19 g/d SCFP for 9 wk were subjected to an FR challenge for 5 d during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR, and ileal scrapping RNA was used for RNAseq (NovaSeq 6000, 100 bp read length). Statistical analysis was performed in R and bioinformatics using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO databases. One thousand six hundred and ninety-six differentially expressed genes (DEG; FDR-adjusted P ≤ 0.10) were detected in SCFP vs. control, with 451 upregulated and 1,245 downregulated. "Mucin type O-glycan biosynthesis" was the top downregulated KEGG pathway due to downregulation of genes catalyzing glycosylation of mucins (GCNT3, GALNT5, B3GNT3, GALNT18, and GALNT14). An overall downregulation of cell and tissue structure genes (e.g., extracellular matrix proteins) associated with collagen (COL6A1, COL1A1, COL4A1, COL1A2, and COL6A2), laminin (LAMB2), and integrins (ITGA8, ITGA2, and ITGA5) also were detected with SCFP. A subset of DEG enriched in the GO term "extracellular exosome" and "extracellular space". Chemokines within "Cytokine-cytokine receptor interaction pathways" such as CCL16, CCL21, CCL14, CXCL12, and CXCL14 were downregulated by SCFP. The "Glutathione metabolism" pathway was upregulated by SCFP, including GSTA1 and RRM2B among the top upregulated genes, and GSTM1 and GPX8 as top downregulated genes. There were 9 homeobox transcription factors among the top 50 predicted transcription factors using the RNAseq DEG dataset, underscoring the importance of cell differentiation as a potential target of dietary SCFP. Taken together, SCFP downregulated immune-, ECM-, and mucin synthesis-related genes during FR. Homeobox transcription factors appear important for the transcriptional response of SCFP.


Stressors such as lack of access to feed, hot temperatures, transportation, and disease contribute to diminished gut epithelial barrier integrity in livestock. RNA-sequencing technology and bioinformatics were used to evaluate genome-wide mRNA abundance profiles in ileal tissue from dairy cows fed Saccharomyces cerevisiae fermentation product (SCFP) or an unsupplemented control diet during an intestinal challenge induced by feed restriction. Molecular responses were characterized according to metabolic pathways and other biological categories. Genes associated with "Mucin type O-glycan biosynthesis" and "Extracellular matrix-receptor interaction" were downregulated due to SCFP relative to controls. Alterations in cytokine and chemokine mRNA profiles induced by SCFP underscored differences in tissue immune response. Overall, SCFP altered the transcriptome of ileal tissue damaged by feed restriction.


Asunto(s)
Suplementos Dietéticos , Lactancia , Femenino , Bovinos/genética , Animales , Suplementos Dietéticos/análisis , Lactancia/fisiología , Saccharomyces cerevisiae/metabolismo , Fermentación , Transcriptoma , Dieta/veterinaria , Leche/metabolismo , Mucinas , Factores de Transcripción/metabolismo , Alimentación Animal/análisis
6.
Transl Anim Sci ; 7(1): txad074, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37483683

RESUMEN

The objective of this study was to compare the effect of supplementing dairy cow diets with contrasting sources of omega-6 (soybean oil) and omega-3 (fish oil) PUFA on rumen microbiome. For 63 d, 15 mid-lactating cows were fed a control diet (n = 5 cows; no fat supplement) or control diet supplemented with 2.9% dry matter (DM) of either soybean oil (SO; n = 5 cows) or fish oil (FO; n = 5 cows). Ruminal contents were collected on days 0, 21, 42, and 63 for 16S rRNA gene sequencing. Beta diversity and Shannon, Simpson and Chao1 diversity indices were not affected by dietary treatments. In terms of core microbiome, Succiniclasticum, Prevotella, Rikenellaceae_RC9_gut_group, and NK4A214_group were the most prevalent taxa regardless of treatments. Bifidobacterium was absent in SO diet, Acetitomaculum was absent in FO, and Sharpea was only detected in SO. Overall, results showed that at 2.9% DM supplementation of either SO or FO over 63 days in dairy cow diets does not cause major impact on bacterial community composition and thus is recommended as feeding practice.

7.
J Pineal Res ; 75(2): e12892, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37317652

RESUMEN

The accelerated pace of life at present time has resulted in tremendous alterations in living patterns. Changes in diet and eating patterns, in particular, coupled with irregular light-dark (LD) cycles will further induce circadian misalignment and lead to disease. Emerging data has highlighted the regulatory effects of diet and eating patterns on the host-microbe interactions with the circadian clock (CC), immunity, and metabolism. Herein, we studied how LD cycles regulate the homeostatic crosstalk among the gut microbiome (GM), hypothalamic and hepatic CC oscillations, and immunity and metabolism using multiomics approaches. Our data demonstrated that central CC oscillations lost rhythmicity under irregular LD cycles, but LD cycles had minimal effects on diurnal expression of peripheral CC genes in the liver including Bmal1. We further demonstrated that the GM could regulate hepatic circadian rhythms under irregular LD cycles, the candidate bacteria including Limosilactobacillus, Actinomyces, Veillonella, Prevotella, Campylobacter, Faecalibacterium, Kingella, and Clostridia vadinBB60 et al. A comparative transcriptomic study of innate immune genes indicated that different LD cycles had varying effects on immune functions, while irregular LD cycles had greater impacts on hepatic innate immune functions than those in the hypothalamus. Extreme LD cycle alterations (LD0/24 and LD24/0) had worse impacts than slight alterations (LD8/16 and LD16/8), and led to gut dysbiosis in mice receiving antibiotics. Metabolome data also demonstrated that hepatic tryptophan metabolism mediated the homeostatic crosstalk among GM-liver-brain axis in response to different LD cycles. These research findings highlighted that GM could regulate immune and metabolic disorders induced by circadian dysregulation. Further, the data provided potential targets for developing probiotics for individuals with circadian disruption such as shift workers.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Melatonina , Animales , Ratones , Fotoperiodo , Relojes Circadianos/fisiología , Multiómica , Melatonina/metabolismo , Ritmo Circadiano/fisiología , Hígado/metabolismo , Hipotálamo/metabolismo
8.
J Dairy Sci ; 106(7): 5127-5145, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225585

RESUMEN

Skeletal muscle turnover helps support the physiological needs of dairy cows during the transition into lactation. We evaluated effects of feeding ethyl-cellulose rumen-protected methionine (RPM) during the periparturient period on abundance of proteins associated with transport AA and glucose, protein turnover, metabolism, and antioxidant pathways in skeletal muscle. Sixty multiparous Holstein cows were used in a block design and assigned to a control or RPM diet from -28 to 60 d in milk. The RPM was fed at a rate of 0.09% or 0.10% of dry matter intake (DMI) during the prepartal and postpartal periods to achieve a target Lys:Met ratio in the metabolizable protein of ∼2.8:1. Muscle biopsies from the hind leg of 10 clinically healthy cows per diet collected at -21, 1, and 21 d relative to calving were used for western blotting of 38 target proteins. Statistical analysis was performed using the PROC MIXED statement of SAS version 9.4 (SAS Institute Inc.) with cow as random effect, whereas diet, time, and diet × time were the fixed effects. Diet × time tended to affect prepartum DMI, with RPM cows consuming 15.2 kg/d and controls 14.6 kg/d. However, diet had no effect on postpartum DMI (17.2 and 17.1 ± 0.4 kg/d for control and RPM, respectively). Milk yield during the first 30 d in milk was also not affected by diet (38.1 and 37.5 ± 1.9 kg/d for control and RPM, respectively). Diet or time did not affect the abundance of several AA transporters or the insulin-induced glucose transporter (SLC2A4). Among evaluated proteins, feeding RPM led to lower overall abundance of proteins associated with protein synthesis (phosphorylated EEF2, phosphorylated RPS6KB1), mTOR activation (RRAGA), proteasome degradation (UBA1), cellular stress responses (HSP70, phosphorylated MAPK3, phosphorylated EIF2A, ERK1/2), antioxidant response (GPX3), and de novo synthesis of phospholipids (PEMT). Regardless of diet, there was an increase in the abundance of the active form of the master regulator of protein synthesis phosphorylated MTOR and the growth-factor-induced serine/threonine kinase phosphorylated AKT1 and PIK3C3, whereas the abundance of a negative regulator of translation (phosphorylated EEF2K) decreased over time. Compared with d 1 after calving and regardless of diet, the abundance of proteins associated with endoplasmic reticulum stress (XBP1 spliced), cell growth and survival (phosphorylated MAPK3), inflammation (transcription factor p65), antioxidant responses (KEAP1), and circadian regulation (CLOCK, PER2) of oxidative metabolism was upregulated at d 21 relative to parturition. These responses coupled with the upregulation of transporters for Lys, Arg, and His (SLC7A1) and glutamate/aspartate (SLC1A3) over time were suggestive of dynamic adaptations in cellular functions. Overall, management approaches that could take advantage of this physiological plasticity may help cows make a smoother transition into lactation.


Asunto(s)
Antioxidantes , Metionina , Femenino , Bovinos , Animales , Metionina/metabolismo , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Rumen/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Lactancia/fisiología , Leche/metabolismo , Dieta/veterinaria , Periodo Posparto , Racemetionina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Músculo Esquelético/metabolismo , Suplementos Dietéticos
9.
J Agric Food Chem ; 71(22): 8527-8539, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224334

RESUMEN

Goat milk is increasingly recognized by consumers due to its high nutritional value, richness in short- and medium-chain fatty acids, and richness in polyunsaturated fatty acids (PUFA). Exogenous supplementation of docosahexaenoic acid (DHA) is an important approach to increasing the content of PUFA in goat milk. Several studies have reported benefits of dietary DHA in terms of human health, including potential against chronic diseases and tumors. However, the mechanisms whereby an increased supply of DHA regulates mammary cell function is unknown. In this study, we investigated the effect of DHA on lipid metabolism processes in goat mammary epithelial cells (GMEC) and the function of H3K9ac epigenetic modifications in this process. Supplementation of DHA promoted lipid droplet accumulation increased the DHA content and altered fatty acid composition in GMEC. Lipid metabolism processes were altered by DHA supplementation through transcriptional programs in GMEC. ChIP-seq analysis revealed that DHA induced genome-wide H3K9ac epigenetic changes in GMEC. Multiomics analyses (H3K9ac genome-wide screening and RNA-seq) revealed that DHA-induced expression of lipid metabolism genes (FASN, SCD1, FADS1, FADS2, LPIN1, DGAT1, MBOAT2), which were closely related with changes in lipid metabolism processes and fatty acid profiles, were regulated by modification of H3K9ac. In particular, DHA increased the enrichment of H3K9ac in the promoter region of PDK4 and promoted its transcription, while PDK4 inhibited lipid synthesis and activated AMPK signaling in GMEC. The activation of the expression of fatty acid metabolism-related genes FASN, FADS2, and SCD1 and their upstream transcription factor SREBP1 by the AMPK inhibitor was attenuated in PDK4-overexpressing GMEC. In conclusion, DHA alters lipid metabolism processes via H3K9ac modifications and the PDK4-AMPK-SREBP1 signaling axis in goat mammary epithelial cells, providing new insights into the mechanism through which DHA affects mammary cell function and regulates milk fat metabolism.


Asunto(s)
Ácidos Docosahexaenoicos , Metabolismo de los Lípidos , Humanos , Animales , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Triglicéridos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Epigénesis Genética , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Células Epiteliales/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo
10.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638067

RESUMEN

Increased concentrations of free fatty acids (FFAs) induce reactive oxygen species (ROSs) generation and endoplasmic reticulum (ER) stress, thus, increasing the risk of fatty liver in dairy cows during the periparturient period. In non-ruminants, Taraxasterol (Tara; a pentacyclic triterpenoid found in medicinal plants) plays an important role in anti-inflammatory and antioxidant reactions. Whether Tara can alleviate or prevent fatty liver in ruminants is unknown. We addressed whether Tara supply could dampen lipid accumulation, ROSs production, and ER stress caused by FFAs in calf hepatocytes. Primary calf hepatocytes were isolated from five healthy calves (1 d old, female, 30-40 kg, fasting, rectal temperature 38.7-39.7 °C). In the first experiment, hepatocytes were incubated with various concentrations of Tara (2.5, 5, and 10 µg/mL) for 12 h prior to the 1.2-mM FFAs challenge. Results indicated that the level of ROSs was lowest with 5 µg/mL Tara. Thus, to further characterize the molecular mechanisms whereby Tara protects from FFAs-induced lipid deposition in calf hepatocytes, we performed incubations with 5 µg/mL Tara for 12 h prior to a 1.2-mM FFAs challenge for an additional 12 h. Results indicated that 1.2-mM FFAs challenge increased mitochondrial membrane potential (MMP), enhanced expression of proteins and mRNA associated with ER stress (PERK, IRE1, GRP78, ATF6, and CHOP) and fatty acid synthesis (FASN, ACC1, and SREBP-1c), and ultimately led to increased lipid droplet synthesis. In contrast, Tara treatment alleviated these negative effects after 1.2-mM FFAs challenge. To determine whether Tara protects against FFAs-induced lipid droplet synthesis by alleviating oxidative stress, hepatocytes were treated with 5 µg/mL Tara for 22 h prior to H2O2 (440 µM) challenge for 2 h. Compared with H2O2 treatment alone, results revealed a marked decrease in ROSs, MMP, and protein abundance of ER stress (GRP78, ATF6, and CHOP) and lipid droplet synthesis in response to Tara prior to H2O2 challenge. Data suggested that the increase in mitochondrial ROSs production contributes to lipid accumulation in calf hepatocytes. Collectively, our in vitro data indicate that Tara alleviates fatty acid-induced lipid deposition. Further research is warranted to ascertain that Tara can be helpful in the therapeutic management of early lactating cows to control or alleviate excessive hepatic lipid deposition.


Fatty liver is a common occurrence in the early postpartum period, partly due to the large influx of fatty acids into the liver during adipose tissue lipolysis. Because there is a linkage between fatty acid metabolism, oxidative stress, and lipid deposition in hepatocytes of nonruminant animals, we evaluated the potential therapeutic roles of Taraxasterol on reactive oxygen species and endoplasmic reticulum (ER) stress in vitro. This compound found in medicinal plants alleviated oxidative and ER stress and reduced lipid accumulation. Thus, it may represent a novel therapeutic tool for the management of dairy cows around parturition.


Asunto(s)
Enfermedades de los Bovinos , Hígado Graso , Femenino , Bovinos , Animales , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado/metabolismo , Chaperón BiP del Retículo Endoplásmico , Lactancia , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos , Hepatocitos/metabolismo , Hígado Graso/veterinaria , Estrés del Retículo Endoplásmico , Ácidos Grasos no Esterificados/metabolismo , Enfermedades de los Bovinos/metabolismo
11.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640135

RESUMEN

Periods of decreased feed intake may disrupt function of the intestinal barrier. Feeding NutriTek® (NTK; Diamond V, Cedar Rapids, IA), a postbiotic from S. cerevisiae fermentation (SCFP), improved health and supported anti-inflammatory functions. We investigated the effects of feeding NTK to cows before and during a period of feed restriction (FR) designed to model periods of intestinal barrier dysfunction. In total, 16 multiparous cows (97.1 ± 7.6 DIM; n = 8/group) were fed a control diet (CON) or CON plus 19 g/d NTK for 9 wk (Phase 1; P1) and then were subjected to an FR challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d prior to FR. Milk yield (MY) and DMI were collected daily. During FR, milk was collected daily for composition, blood daily to measure plasma biomarkers and to measure monocyte and neutrophil phagocytosis and oxidative burst on d 1, 3, and 5. Data were analyzed using a mixed model in SAS 9.4. All data were subjected to repeated measures ANOVA. Dietary treatment (TRT), Day, and their interaction (TRT × Day) were considered as fixed effects and cow as the random effect. For analysis of P1, data collected during a 7-d adaptation phase were used as a covariate. During P1, NTK cows tended to have greater DMI and had greater fat, ECM and FCM yields, and feed efficiency (ECM/DMI and FCM/DMI). Protein yield tended to be greater in NTK compared with CON cows. A tendency for greater monocyte phagocytosis was detected with NTK. However, during FR, feeding NTK led to lower MY and lactose yield and tended to lower solids percentage. While NTK cows tended to have reduced neutrophil oxidative burst than CON cows during FR (NTK: 26.20%, CON: 36.93%), there was no difference in phagocytosis (NTK: 7.92%, CON: 6.31%). Plasma biomarkers of energy metabolism, liver function, inflammation, and oxidative stress during the FR period did not differ. Overall, results suggested that feeding NTK increased the yield of FCM, ECM, feed efficiency and milk components prior to FR.


Postbiotic fermentation products have the potential to improve health and support anti-inflammatory functions when fed to lactating dairy cows. Since dairy cows experience disruptions of the intestinal barrier function at various stages of their life, for example, the transition into lactation, we sought to investigate potential beneficial effects of feeding a Saccharomyces cerevisiae fermentation (NTK) before and during a period of feed restriction to challenge gut function. Although feeding NTK increased yield of energy-corrected milk and feed efficiency prior to feed restriction (FR), it had no effect on production or plasma indices of metabolism, inflammation, and liver function during a period of abrupt FR to 40% of baseline feed intake.


Asunto(s)
Leche , Saccharomyces cerevisiae , Femenino , Bovinos , Animales , Leche/metabolismo , Saccharomyces cerevisiae/metabolismo , Suplementos Dietéticos , Lactancia , Fermentación , Dieta/veterinaria , Fagocitosis , Alimentación Animal/análisis
12.
J Anim Physiol Anim Nutr (Berl) ; 107(4): 995-1005, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36353940

RESUMEN

Milk fat globules (MFGs) surround the triacylglycerol core that composes milk fat. The aim of this study is to induce milk fat depression via dietary conjugated linoleic acid (CLA) supplementation to study MFG size parameters, number and glycerophospholipid composition. Eighteen Holstein dairy cows (136 ± 28 days in milk, 571 ± 37.9 kg body weight, 27.6 ± 2.1 kg milk/day) were selected and randomly assigned to a control or CLA group for a 14-day period. Cows were fed a basal diet (control, n = 8) or the control plus 400 g/day CLA (C18:2 cis-9, trans-11 38.1% and C18:2 trans-10, cis-12 36.8%) (n = 10) for 7 days after which the CLA group was switched to the basal diet for another 7 days along with the control group. Cow performance, milk composition, MFG size and numbers were measured daily. On the seventh day after the start of the experiment, milk samples were identified and the quantification of glycerophospholipid compounds, and RNA were isolated from milk fat samples for a real-time polymerase chain reaction. Compared with control, at Day 7 from the start of feeding, supplemental CLA did not affect milk production (28.09 vs. 28.50 kg/day), dry matter intake (14.9 vs. 15.4 kg/day), or milk protein (3.55/100 vs. 3.70 g/100 ml) and lactose contents (5.11/100 vs. 5.17 g/100 ml). However, although the specific surface area of MFG (2138 vs. 1815 m²/kg) was greater, CLA reduced milk fat content (1.95/100 vs 3.64 g/100 ml on Day 7) and particle size parameters of MFG. The number of MFG gradually decreased until Day 7 of feeding, and then increased by Day 14 (2.96 × 109 on Day 1, 1.63 × 109 on Day 7 and 2.28 × 109 on Day 14) in the CLA group. Compared with control, glycerophospholipid analysis revealed that concentrations of phosphatidylcholine (PC) (e.g., PC [16:0/18:1] 20322 vs. 29793 nmol/L), lysophosphatidylethanolamine (LPE) (e.g., LPE [18:1] 956 vs. 4610 nmol/L) and phosphatidylethanolamine (PE) (e.g., PE [16:0/18:1] 7000 vs. 9769 nmol/L) in milk lipids decreased during CLA feeding. In contrast, concentrations of phosphatidylinositol (PI) (e.g., PI [18:0/18:1] 4052 vs. 1799 nmol/L) and phosphatidylserine (PS) (e.g., PS [18:1/18:2] 9500 vs. 6843 nmol/L) increased. The messenger RNA abundance of fatty acid synthase, diacylglycerol O-acyltransferase 1, glycerol-3-phosphate acyltransferase 4 and phosphate cytidylyltransferase 1, choline, alpha (PCYT1A) were downregulated in the CLA group, confirming published data demonstrating a negative effect of CLA on lipogenesis in the mammary gland. Overall, these results provided evidence for the important role of lipogenic gene expression in the regulation of MFG size, number and glycerophospholipid composition.


Asunto(s)
Ácidos Linoleicos Conjugados , Femenino , Animales , Bovinos , Ácidos Linoleicos Conjugados/farmacología , Lactancia/fisiología , Ácidos Grasos/metabolismo , Fosfolípidos , Dieta/veterinaria , Glicerofosfolípidos/farmacología , Suplementos Dietéticos/análisis
13.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36342746

RESUMEN

Although in vitro data with mixed ruminal fluid demonstrated positive effects of posbiotic diet (POS) from lactobacilli on measures of fermentation and microbial profiles, there is a paucity of in vivo data with lactating ruminants. The aim of the study was to evaluate the effects of incorporating POS into diets of lactating goats on energy (E) partitioning, carbon (C) and nitrogen (N) balance, and performance. Ten late-lactation Murciano-Granadina goats were used in a crossover design with 26-d periods. Goats in the control diet (CON) were fed daily at the rate of 1 kg alfalfa hay and 1.5 kg concentrate, and the treatment group (POS) was fed CON with the addition of 3.75 g/d of Probisan Ruminants (PENTABIOL S.L., Navarra, Spain). No differences in DMI were detected. However, ruminal fluid propionate and apparent total tract digestibilities of NDF and ADF were greater (18%, 4.7%, and 5.2%, respectively; P < 0.05) in POS compared with the CON diet. Daily partitioning of E to milk and efficiency of ME intake for milk production greater (11% and 3.0%, respectively; P < 0.05) in POS compared with CON. The nonprotein RQ was greater in POS compared with CON due to greater (P < 0.05) oxidation of carbohydrate (213 vs. 115 kJ/kg of BW0.75 per day) compared with fat (362 vs. 486 kJ/kg of BW0.75 per day). Although no differences were found in C balance, goats in POS had lower (P < 0.05) amounts of C in CH4 (1.1 vs. 1.3 g/kg BW0.75 per day) compared with CON. There were no differences in N intake or N in feces or urine, but N in milk was greater (P < 0.05) in POS compared with the CON diet (0.8 vs. 0.7 g/kg BW0.75 per day). Yield of fat-corrected milk (FCM) (3.20 vs. 2.72 kg/d; P < 0.05) and concentration of true protein (3.4 vs. 3.3 kg/d; P < 0.05) and lactose (4.7 vs. 4.5 kg/d; P < 0.05) were greater in POS compared with CON. These responses were accompanied by lower (P < 0.05) urea (12.3 vs. 16.6 mM/L) and ammonia-N (6.6 vs. 8.8 mg/L) without changes in fat concentration (6.1% vs. 6.0%; P > 0.05) in POS compared with the CON diet. Daily amount of CH4 emission did not differ P > 0.05 between diets. However, when expressed relative to unit of edible product, feeding POS reduced (P < 0.05) the amount of CH4 by 46 g/kg of milk fat, 97 g/kg of milk protein, and 3 g/kg of milk compared with CON. Overall, data indicated that feeding a postbiotic in late-lactation increased energy efficiency for milk production partly by reducing CH4 emission.


Although in vitro data with mixed ruminal fluid demonstrated positive effects of postbiotics from lactobacilli on measures of fermentation and microbial profiles, there is a paucity of in vivo data with lactating ruminants. We evaluated the effects of incorporating a postbiotic yeast fermentation product in diets of lactating goats on energy partitioning, carbon and nitrogen balance, and performance. The postbiotic led to greater ruminal propionate concentration and fiber digestibility, and decreased partitioning of energy to methane. Those changes were associated with greater milk production. Data suggested that postbiotics could enhance efficiency of nutrient use for milk production.


Asunto(s)
Lactancia , Propionatos , Femenino , Animales , Propionatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Metano/metabolismo , Fermentación , Dieta/veterinaria , Suplementos Dietéticos , Carbohidratos , Cabras/fisiología , Rumen/metabolismo , Digestión , Ensilaje/análisis
14.
PLoS One ; 17(12): e0278660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36459516

RESUMEN

This study was aimed to evaluate the effects of post-transportation vitamin E (VE) supplementation on health condition, blood biochemical parameters, blood antioxidant indices and blood metabolomics in yak. Five yaks were used in this study. After 2100 km of highway transportation from Riwoqe county to Rongchang County, Chongqing, blood was collected immediately after arrival and these samples served as the baseline (control, CON_VE). A VE injection (40 mg/kg) was then performed and blood samples were collected 10 days later. Injection of VE led to lower serum VE concentration. Relative to the CON_VE, VE injection led to greater concentrations of creatinine and lower concentrations of glutamate pyruvic transaminase, alkaline phosphatase, aspartate aminotransferase, total bilirubin, indirect bilirubin, direct bilirubin, UREA and glucose. Compared with CON_VE, VE injection led the lower serum level of malondialdehydeand greater serum level of glutathione s-transferase, glutathione peroxidase, glutathione reductase and glutathione peroxidase 4. Based on metabolomics analysis, 119 differentially altered serum metabolites (P<0.05 and VIP>1.0) were identified with VE injection relative to CON_VE. VE injection resulted in changes of lysophosphatidylethanolamine, lysophosphatidylcholine, phosphocholine, choline, malate, citrate, α-Oxo-glutarate, phenylalanine, 3-Phenylpropanoic acid and 3-(3-Hydroxyphenyl) propanoic acid. These metabolites are associated with lipid metabolism, tricarboxylic acid cycle and oxidative stress. Overall, our study indicates that VE injection can alleviate transportation stress in yak partly through protecting liver and kidney, and improving antioxidant defense systems.


Asunto(s)
Antioxidantes , Inmunoterapia , Bovinos , Animales , Vitamina E , Bilirrubina , Suplementos Dietéticos
15.
Anim Nutr ; 11: 359-368, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36329684

RESUMEN

Previous studies have revealed that dietary N-carbamylglutamate (NCG) or L-arginine (Arg) improves small intestinal integrity and immune function in suckling Hu lambs that have experienced intrauterine growth retardation (IUGR). Whether these nutrients alter redox status and apoptosis in the colon of IUGR lambs is still unknown. This study, therefore, aimed at investigating whether dietary supplementation of Arg or NCG alters colonic redox status, apoptosis and endoplasmic reticulum (ER) stress and the underlying mechanism of these alterations in IUGR suckling Hu lambs. Forty-eight 7-d old Hu lambs, including 12 with normal birth weight (4.25 ± 0.14 kg) and 36 with IUGR (3.01 ± 0.12 kg), were assigned to 4 treatment groups (n = 12 each; 6 males and 6 females) for 3 weeks. The treatment groups were control (CON), IUGR, IUGR + Arg and IUGR + NCG. Relative to IUGR lambs, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) content, as well as proliferation index, were higher (P < 0.05) whereas reactive oxygen species (ROS), malondialdehyde (MDA) levels and apoptotic cell numbers were lower (P < 0.05) in colonic tissue for both IUGR + Arg and NCG lambs. Both mRNA and protein levels of C/EBP homologous protein 10 (CHOP10), B-cell lymphoma/leukaemia 2 (Bcl-2) -associated X protein (Bax), apoptosis antigen 1 (Fas), activating transcription factor 6 (ATF6), caspase 3, and glucose-regulated protein 78 (GRP78) were lower (P < 0.05) while glutathione peroxidase 1 (GPx1), Bcl-2 and catalase (CAT) levels were higher (P < 0.05) in colonic tissue for IUGR + Arg and IUGR + NCG lambs compared with IUGR lambs. Based on our results, dietary NCG or Arg supplementation can improve colonic redox status and suppress apoptosis via death receptor-dependent, mitochondrial and ER stress pathways in IUGR suckling lambs.

16.
J Dairy Sci ; 105(11): 9179-9190, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175227

RESUMEN

Milk fat globule membrane (MFGM) proteins surround the triacylglycerol core comprising milk fat globules (MFG). We previously detected a decrease in the size of fat globules during conjugated linoleic acid (CLA)-induced milk fat depression (MFD), and other studies have reported that some MFGM proteins play a central role in regulating mammary cellular lipid droplet size. However, little is known about the relationship between MFD, MFG size, and MFGM proteins in bovine milk. The aim of this study was to investigate the profile of MFGM proteins during MFD induced by CLA. Sixteen mid-lactating Holstein cows (145 ± 24 d in milk) with similar body condition and parity were divided into control and CLA groups over a 10-d period. Cows were fed a basal diet (control, n = 8) or control plus 15 g/kg of dry matter (DM) CLA (n = 8) to induce MFD. Cow performance, milk composition, and MFG size were measured daily. On d 10, MFGM proteins were extracted and identified by quantitative proteomic analysis, and western blotting was used to verify a subset of the identified MFGM proteins. Compared with controls, supplemental CLA did not affect milk production, DM intake, or milk protein and lactose contents. However, CLA reduced milk fat content (3.73 g/100 mL vs. 2.47 g/100 mL) and the size parameters volume-related diameter D[4,3] (3.72 µm vs. 3.35 µm) and surface area-related diameter D[3,2] (3.13 µm vs. 2.80 µm), but increased specific surface area of MFG (1,905 m2/kg vs. 2,188 m2/kg). In total, 177 differentially expressed proteins were detected in milk from cows with CLA-induced MFD, 60 of which were upregulated and 117 downregulated. Correlation analysis showed that MFG size was negatively correlated with various proteins, including XDH and FABP3, and positively correlated with MFG-E8, RAB19, and APOA1. The results provide evidence for an important role of MFGM proteins in regulating MFG diameter, and they facilitate a mechanistic understanding of diet-induced MFD.


Asunto(s)
Ácidos Linoleicos Conjugados , Embarazo , Femenino , Bovinos , Animales , Ácidos Linoleicos Conjugados/farmacología , Gotas Lipídicas/metabolismo , Lactancia , Lactosa , Proteínas de la Membrana , Proteómica , Depresión , Ácidos Grasos/metabolismo , Proteínas de la Leche/análisis , Triglicéridos
17.
Front Vet Sci ; 9: 852321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832333

RESUMEN

Background: Bacillus subtilis is a probiotic strain that is widely used as a feed supplement for ruminants. In this study, one B. subtilis strain isolated from the ruminal fluid of Holstein dairy cows was used for an ex vivo study with ruminal tissue explants. The main goal was to assess the potential endosymbiotic links between B. subtilis and the ruminal epithelium using molecular analyses and amino acid profiling. The explant culture protocol was first optimized to determine the ideal conditions in terms of tissue viability before performing the actual experiments involving active and inactive bacteria with or without protein synthesis inhibitors, such as LY294002 (phosphatidylinositol 3-kinase inhibitor) or rapamycin [mammalian target of rapamycin (mTOR) inhibitor]. Results: The mRNA levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB), serine/threonine kinase (AKT), mTOR, P70S6K1, and eukaryotic translation initiation factor 4E binding protein 1 were the highest (p < 0.01), while those of programmed cell death 4 were the lowest when the tissue was incubated with 107 of B. subtilis. Compared with the inactivated bacteria, the expression levels of PIK3CB and AKT, and overall changes in mTOR and P70S6K1 were greater in rumen explants with living bacteria (p < 0.05). With an increase in B. subtilis concentration, the trends of protein and corresponding gene changes were consistent. There were differences in the concentrations of individual amino acids in the supernatants of living and inactivated bacterial culture groups, with most amino acids enriched in pathways, such as aminoacyl tRNA biosynthesis, cyanoamino acid metabolism, monobactam biosynthesis, or glycine, serine, and threonine metabolism. The addition of psilocybin upregulated the expression levels of PIK3CB and AKT. A significant decrease (p < 0.05) in PIK3CB and mTOR protein expression levels was detected after the addition of LY294002 and rapamycin. In addition, These responses were associated with the downregulation (p < 0.05) of AKT and P70S6K protein expression levels. Conclusions: We confirmed that the in vivo ruminal tissue culture system is a suitable model for studying probiotic-induced alterations in tissue function. As such, this study provides a means for future mechanistic studies related to microbial regulation and the dietary supply of proteins. In addition, living and inactivated B. subtilis can promote protein synthesis in ruminal tissue explants by altering the expression levels of related factors in the PIK3CB-AKT-mTORC1 pathway, which could further aid in optimizing the feed efficiency and increasing the use of inactivated bacteria as additives in dairy cow farming.

18.
J Anim Sci ; 100(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35553680

RESUMEN

The first objective was to investigate the effects of feeding rumen-protected methionine (RPM) during a heat stress (HS) challenge on abundance and phosphorylation of mechanistic target of rapamycin (mTOR)-related signaling proteins in mammary gland. The second objective was to investigate how HS and RPM may modulate the response of mammary gland explants to an inflammatory challenge using lipopolysaccharide (LPS). Thirty-two multiparous, lactating Holstein cows (184 ± 59 DIM) were randomly assigned to 1 of 2 environmental treatment groups, and 1 of 2 dietary treatments [TMR with RPM (Smartamine M; Adisseo Inc.; 0.105% DM as top dress) or TMR without RPM (CON)] in a crossover design. There were two periods with two phases per period. In phase 1 (9 d), all cows were in thermoneutral conditions (TN) and fed ad libitum. During phase 2 (9 d), group 1 (n = 16) cows were exposed to HS using electric heat blankets, whereas group 2 cows (n = 16) remained in TN but were pair-fed to HS counterparts to control for DMI decreases associated with HS. After a washout period (14 d), the study was repeated (period 2). Environmental treatments were inverted in period 2 (sequence), whereas dietary treatments remained the same. Mammary tissue was harvested via biopsy at the end of both periods. Tissue was used for protein abundance analysis and also for incubation with 0 or 3 µg/mL of LPS for 2 h and subsequently used for mRNA abundance. Data were analyzed using PROC MIXED in SAS. Analysis of protein abundance data included the effects of diet, environment and their interaction, and period and sequence to account for the crossover design. The explant data model also included the effect of LPS and its interaction with environment and diet. Abundance of phosphorylated mTOR and ratio of phosphorylated eukaryotic translation elongation factor 2 (p-EEF2) to total EEF2 in non-challenged tissue was greater with RPM supplementation (P = 0.04 for both) and in both cases tended to be greater with HS (P = 0.08 for both). Regardless of RPM supplementation, incubation with LPS upregulated mRNA abundance of IL8, IL6, IL1B, CXCL2, TNF, NFKB1, and TLR2 (P < 0.05). An environment × LPS interaction was observed for NFKB1 (P = 0.03); abundance was greater in LPS-treated explants from non-HS compared with HS cows. Abundance of CXCL2, NFKB1, NOS2, NOS1, and SOD2 was lower with HS (P < 0.05). Although LPS did not alter mRNA abundance of the antioxidant transcription factor NFE2L2 (P = 0.59), explants from HS cows had lower abundance of NFE2L2 (P < 0.001) and CUL3 (P = 0.04). Overall, RPM supplementation may alter mTOR activation in mammary tissue. Additionally, although HS reduced explant immune and antioxidant responses, RPM did not attenuate the inflammatory response induced by LPS in vitro.


Heat stress (HS) is an environmental issue worldwide and occurs when animals experience a heat load that exceeds their thermoregulatory capacity. Milk protein synthesis and overall production often decrease when cows are exposed to HS conditions, in part due to lower feed intake and a limit in the mammary supply of amino acids. Increasing post-ruminal supply of methionine to late-lactation cows upregulated abundance of p-mTOR in mammary tissue, providing a link with the greater milk protein production. Exposure of cows to a HS challenge also increased abundance of p-mTOR, but did not alter milk protein suggesting this response might have been associated with synthesis of other proteins. Further work at a translational level is needed to understand potential mechanisms whereby methionine may modulate mammary metabolism during periods of HS.


Asunto(s)
Enfermedades de los Bovinos , Trastornos de Estrés por Calor , Animales , Antioxidantes/metabolismo , Bovinos , Enfermedades de los Bovinos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Trastornos de Estrés por Calor/metabolismo , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Lactancia , Lipopolisacáridos/metabolismo , Metionina/farmacología , Leche/metabolismo , ARN Mensajero/metabolismo , Rumen/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
J Anim Sci ; 100(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35137104

RESUMEN

Condensed tannins (CT), one of the most ubiquitous compounds in the plant kingdom, can modulate ruminal nutrient metabolism. Objectives were to study potential interactions of CT and polyunsaturated fatty acids (PUFA) on ruminal fermentation, biohydrogenation (BH), and methane production. Ruminal fluid obtained from lactating Holstein Friesian cows was used. All experiments were carried out as a completely randomized design with the same mixed diet: control (60:40 forage:concentrate) without supplement (CON), 2.5% soybean oil (SBO), and SBO + grape seed tannin extract (GSTE) at 0.2%, 0.4%, 0.6%, or 0.8% dietary DM (ST0.2, ST0.4, ST0.6, and ST0.8, respectively). Compared with CON (84.7 mM), total VFA concentration was not affected by SBO, but decreased (P < 0.001) with ST0.8 vs. ST0.6 (75.3 vs. 78.3 mM). Relative to CON, methane production was depressed (P < 0.001) by 17.7% and 28.0% in ST0.4 and ST0.8. The highest (P < 0.001) mean concentrations of c9,t11 CLA and C18:1 t11 were observed with ST0.4 compared with CON, but there was no difference between SBO and CT-containing diets. Disappearance of C18:2 c9,c12 was 49.1% vs. 50.3% in CON vs. SBO, whereas it ranged from 39.9% to 46.3% in CT-containing diets after 2 h incubation (P < 0.001). Concentrations of c9,t11 CLA with supplemental SBO and ST0.8 nearly peaked (P < 0.001) at 2 h incubation, but this fatty acid peaked (P > 0.05) at 6 h incubation and remained higher (P < 0.001; 15.9-17.0 µg/mL) at 24 h incubation with ST0.2, ST0.4, and ST0.6 compared with other diets (13.5-14.5 µg/mL). Compared with CON (50.6 µg/mL), concentration of C18:1 t11 with SBO and CT-containing diets reached a peak (P < 0.001; 241-265 µg/mL) at 12 h incubation. Concentration of C18:0 was 171%-231% higher (P < 0.001) with SBO and CT relative to CON at 24 h incubation. Overall, these results demonstrated that PUFA in SBO are more effective in modulating ruminal BH and CH4 production when combined with CT. However, high doses of added CT can reduce ruminal VFA concentration. Thus, a level of 0.4% GSTE added to diets containing 2.5% PUFA from plant origin might be suitable for optimizing ruminal fermentation and BH of C18:2 c9,c12 to fatty acid intermediates that could have beneficial effects to human health.


Condensed tannins can modulate methane emissions and ruminal biohydrogenation, but effects depend on type and dose. We used an in vitro fermentation system to investigate the effect of increasing doses (0%, 0.2%, 0.4%, 0.6%, and 0.8% dry matter) of grape tannin seed extract (GSTE) in a diet supplemented at 2.5% dry matter with soybean oil on methane production and biohydrogenation. Feeding soybean oil and GSTE at 0.6% and 0.8% reduced content of ruminal volatile fatty acids. Methane production (mL/g dry matter) was lower in the diet containing GSTE at 0.4%. Inclusion of GSTE at 0.2% and 0.4% increased concentration of C18:2 c9,c112, C18:3n3, c9,t11 conjugated linoleic acid and total polyunsaturated fatty acids after 24 h of incubation. The present findings contribute to a better understanding of the effect of condensed tannins from grape seed extract on ruminal fermentation and biohydrogenation.


Asunto(s)
Extracto de Semillas de Uva , Vitis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Fermentación , Extracto de Semillas de Uva/metabolismo , Extracto de Semillas de Uva/farmacología , Lactancia , Metano/metabolismo , Rumen/metabolismo , Semillas/metabolismo , Taninos/metabolismo , Taninos/farmacología
20.
J Anim Sci ; 100(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35137127

RESUMEN

Arginine (Arg) and methionine (Met) can elicit anti-inflammatory and antioxidant effects in animals. Unlike Met, however, it is unknown if the supply of Arg can impact key aspects of adipose tissue (AT) function in dairy cows. Since Met and Arg metabolism are linked through the synthesis of polyamines, it is also possible that they have a complementary effect on aspects of AT function during a stress challenge. In this experiment, subcutaneous AT was harvested from four lactating multiparous Holstein cows (~27.0 kg milk per day, body condition score 3.38 ± 0.23) and used for incubations (4 h) with the following: control medium with an "ideal" profile of essential amino acids (IPAA; CTR; Lys:Met 2.9:1), IPAA plus 100 µM H2O2 (HP), H2O2 plus greater Arg supply (HPARG; Lys:Arg 1:1), or H2O2 plus greater Arg and methionine (Met) supply (HPARGMET; Lys:Met 2.5:1 and Lys:Arg 1:1). Western blotting was used to measure abundance of 18 protein targets associated with insulin and AA signaling, nutrient transport, inflammation, and antioxidant response. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess effects on genes associated with Arg metabolism. Among the protein targets measured, although abundance of phosphorylated (p) AKT serine/threonine kinase (P = 0.05) and p-mechanistic target of rapamycin (P = 0.04) were lowest in HP explants, this effect was attenuated in HPARG and especially HPARGMET compared with CTR. Compared with HP, incubation with HPARG led to upregulation of the AA transporter solute carrier family 1 member 3 (L-glutamate transporter; P = 0.03), the reactive oxygen species detoxification-related enzyme glutathione S-transferase mu 1 (GSTM1; P = 0.03), and fatty acid synthase (P = 0.05). Those effects were accompanied by greater abundance of solute carrier family 2 member 4 (insulin-induced glucose transporter) in explants incubated with HPARG and also HPARGMET (P = 0.04). In addition, compared with other treatments, the peak response in abundance of the intracellular energy sensor 5'-prime-AMP-activated protein kinase was detected with HPARGMET (P = 0.003). There was no effect of Arg or Arg plus Met on the mRNA abundance of genes associated with Arg metabolism (ARG1, NOS2, AMD1, SMS, and SRM). Overall, supplementation of Arg alone or with Met partially alleviated the negative effects induced by H2O2. More systematic studies need to be conducted to explore the function of Arg supply with or without Met on AT function.


In nonruminants, oxygen-derived free-radicals such as hydrogen peroxide produced during stressful events impair insulin responsiveness including glucose uptake, protein synthesis, and fatty acid metabolism. Arginine and methionine supply induce anti-inflammatory and antioxidant responses during stressful conditions. We studied the acute effect of arginine supplementation alone or combined with methionine on protein abundance in adipose tissue explants from lactating Holstein cows challenged with hydrogen peroxide. Hydrogen peroxide reduced protein abundance of key insulin and amino acid signaling proteins. Most pronounced and positive effects were detected with arginine alone, restoring abundance of key target proteins including those involved in glucose, amino acid, and glutathione metabolism. Potential benefits of enhanced post-ruminal arginine supply during stressful periods such as the transition into lactation merit further study.


Asunto(s)
Antioxidantes , Metionina , Tejido Adiposo/metabolismo , Animales , Antioxidantes/metabolismo , Arginina/metabolismo , Arginina/farmacología , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Peróxido de Hidrógeno/metabolismo , Insulina/metabolismo , Lactancia , Metionina/metabolismo , Metionina/farmacología , Leche/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA