RESUMEN
Two Streptomyces spp. strains responsible for potato common scab infections in Uruguay which do not produce diketopiperazines were identified through whole-genome sequencing, and the virulence factor produced by one of them was isolated and characterized. Phylogenetic analysis showed that both pathogenic strains can be identified as S. niveiscabiei, and the structure of the phytotoxin was elucidated as that of the polyketide desmethylmensacarcin using MS and NMR methods. The metabolite is produced in yields of â¼200 mg/L of culture media, induces deep necrotic lesions on potato tubers, stuns root and shoot growth in radish seedlings, and is comparatively more aggressive than thaxtomin A. This is the first time that desmethylmensacarcin, a member of a class of compounds known for their antitumor and antibiotic activity, is associated with phytotoxicity. More importantly, it represents the discovery of a new virulence factor related to potato common scab, an economically-important disease affecting potato production worldwide.
Asunto(s)
Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/química , Dicetopiperazinas , Indoles/toxicidad , Estructura Molecular , Filogenia , Piperazinas/toxicidad , Enfermedades de las Plantas/etiología , Raphanus/microbiología , Streptomyces/patogenicidad , Factores de Virulencia/química , Factores de Virulencia/aislamiento & purificaciónRESUMEN
Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.
Asunto(s)
Islas Genómicas/genética , Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/patogenicidad , Evolución Biológica , Filogenia , Streptomyces/genética , VirulenciaRESUMEN
Streptomyces scabies is the main causative agent of common scab disease, which leads to significant annual losses to potato growers worldwide. The main virulence factor produced by S. scabies is a phytotoxic secondary metabolite called thaxtomin A, which functions as a cellulose synthesis inhibitor. Thaxtomin A production is controlled by the cluster-situated regulator TxtR, which activates expression of the thaxtomin biosynthetic genes in response to cello-oligosaccharides. Here, we demonstrate that at least five additional regulatory genes are required for wild-type levels of thaxtomin A production and plant pathogenicity in S. scabies. These regulatory genes belong to the bld gene family of global regulators that control secondary metabolism or morphological differentiation in Streptomyces spp. Quantitative reverse-transcriptase polymerase chain reaction showed that expression of the thaxtomin biosynthetic genes was significantly downregulated in all five bld mutants and, in four of these mutants, this downregulation was attributed to the reduction in expression of txtR. Furthermore, all of the mutants displayed reduced expression of other known or predicted virulence genes, suggesting that the bld genes may function as global regulators of virulence gene expression in S. scabies.
Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Eliminación de Gen , Prueba de Complementación Genética , Indoles/análisis , Familia de Multigenes , Fenotipo , Piperazinas/análisis , Raphanus/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/microbiología , Streptomyces/patogenicidad , Streptomyces/fisiología , VirulenciaRESUMEN
Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation.
Asunto(s)
Proteínas del Helminto/metabolismo , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidad , Animales , Proteínas del Helminto/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/parasitologíaRESUMEN
A draft genome sequence of the plant pathogen Streptomyces acidiscabies 84-104, an emergent plant pathogen, is presented here. The genome is among the largest of streptomycetes, at more than 11 Mb, and encodes a 100-kb pathogenicity island (PAI) shared with other plant-pathogenic streptomycetes. The presence of this conserved PAI, and the remnants of a conserved integrase/recombinase at its 3' end, supports the hypothesis that S. acidiscabies emerged as a plant pathogen as a result of this acquisition.
Asunto(s)
Genoma Bacteriano , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/genética , Secuencia de Bases , Datos de Secuencia Molecular , Filogenia , Streptomyces/clasificación , Streptomyces/aislamiento & purificaciónRESUMEN
Siderophores are high-affinity iron-chelating compounds produced by bacteria for iron uptake that can act as important virulence determinants for both plant and animal pathogens. Genome sequencing of the plant pathogen Streptomyces scabies 87-22 revealed the presence of a putative pyochelin biosynthetic gene cluster (PBGC). Liquid chromatography (LC)-MS analyses of culture supernatants of S. scabies mutants, in which expression of the cluster is upregulated and which lack a key biosynthetic gene from the cluster, indicated that pyochelin is a product of the PBGC. LC-MS comparisons with authentic standards on a homochiral stationary phase confirmed that pyochelin and not enantio-pyochelin (ent-pyochelin) is produced by S. scabies. Transcription of the S. scabies PBGC occurs via ~19 kb and ~3 kb operons and transcription of the ~19 kb operon is regulated by TetR- and AfsR-family proteins encoded by the cluster. This is the first report, to our knowledge, of pyochelin production by a Gram-positive bacterium; interestingly regulation of pyochelin production is distinct from characterized PBGCs in Gram-negative bacteria. Though pyochelin-mediated iron acquisition by Pseudomonas aeruginosa is important for virulence, in planta bioassays failed to demonstrate that pyochelin production by S. scabies is required for development of disease symptoms on excised potato tuber tissue or radish seedlings.
Asunto(s)
Fenoles/metabolismo , Proteínas Represoras/metabolismo , Streptomyces/metabolismo , Tiazoles/metabolismo , Factores de Transcripción/metabolismo , Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica , Orden Génico , Modelos Biológicos , Familia de Multigenes , Plantas/metabolismo , Plantas/microbiología , ARN Mensajero , Raphanus/metabolismo , Raphanus/microbiología , Proteínas Represoras/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Streptomyces/genética , Factores de Transcripción/genética , Transcripción GenéticaRESUMEN
Streptomyces turgidiscabies Car8 is an actinobacterium that causes the economically important disease potato scab. Pathogenesis in this species is associated with a mobile pathogenicity island (PAISt) that site specifically inserts into the bacA gene in Streptomyces spp. Here we provide the 674,223 bp sequence of PAISt, which consists of two non-overlapping modules of 105,364 and 568,859 bp. These modules are delimited by three copies of an 8 bp palindromic sequence (TTCATGAA), that also is the integration site (att) of the element. Putative tyrosine recombinase (IntSt) and excisionase (XisSt) proteins are encoded just upstream of att-R. PAISt has regions of synteny to pathogenic, symbiotic and saprophytic actinomycetes. The 105,364 bp PAISt module is identical to a genomic island in Streptomyces scabies 87-22, while the 568,859 bp module contains only a short region of synteny to that genome. However, both modules contain previously characterized and candidate virulence genes.
Asunto(s)
Islas Genómicas , Streptomyces/genética , Streptomyces/patogenicidad , Virulencia/genética , Secuencia de Bases , Biología Computacional , ADN Nucleotidiltransferasas/metabolismo , Orden Génico , Genes Bacterianos/genética , Integrasas/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Recombinación Genética , Solanum tuberosum/microbiología , Streptomyces/enzimología , Sintenía/genética , Tirosina/metabolismo , Proteínas Virales/metabolismoRESUMEN
Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.
Asunto(s)
Proteínas Bacterianas/farmacología , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Streptomyces/enzimología , Streptomyces/patogenicidad , Factores de Virulencia/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Permeabilidad de la Membrana Celular , Electroforesis en Gel Bidimensional , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Proteoma/análisis , Solanum tuberosum/microbiología , Streptomyces/química , Streptomyces/crecimiento & desarrollo , Factores de Virulencia/genéticaRESUMEN
Streptomyces species are best known for their ability to produce a wide array of medically and agriculturally important secondary metabolites. However, there is a growing number of species which, like Streptomyces scabies, can function as plant pathogens and cause scab disease on economically important crops such as potato. All of these species produce the phytotoxin thaxtomin, a nitrated dipeptide which inhibits cellulose synthesis in expanding plant tissue. The biosynthesis of thaxtomin involves conserved non-ribosomal peptide synthetases, P450 monooxygenases, and a nitric oxide synthase, the latter being required for nitration of the toxin. This nitric oxide synthase is also responsible for the production of diffusible nitric oxide by scab-causing streptomycetes at the host-pathogen interface, suggesting that nitric oxide production might play an additional role during the infection process. The thaxtomin biosynthetic genes are transcriptionally regulated by an AraC/XylS family regulator, TxtR, which is conserved in pathogenic streptomycetes and is encoded within the thaxtomin biosynthetic gene cluster. The TxtR protein specifically binds cellobiose, a known inducer of thaxtomin biosynthesis, and cellobiose is required for expression of the biosynthetic genes. A second virulence gene in pathogenic Streptomyces species, nec1, encodes a novel secreted protein that may suppress plant defence responses. The thaxtomin biosynthetic genes and nec1 are contained on a large mobilizable pathogenicity island; the transfer of this island to recipient streptomycetes likely explains the rapid emergence of new pathogenic species. The newly available genome sequence of S. scabies will provide further insight into the mechanisms utilized by pathogenic streptomycetes during plant-microbe interactions.
Asunto(s)
Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/metabolismo , Streptomyces/patogenicidad , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Vías Biosintéticas , Celobiosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Indoles/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Piperazinas/química , Streptomyces/clasificación , Streptomyces/genética , VirulenciaRESUMEN
Several Streptomyces species cause plant diseases, including S. scabies, S. acidiscabies and S. turgidiscabies, which produce common scab of potato and similar diseases of root crops. These species produce thaxtomins, dipeptide phytotoxins that are responsible for disease symptoms. Thaxtomins are produced in vivo on diseased potato tissue and in vitro in oat-based culture media, but the regulation of thaxtomin biosynthesis is not understood. S. acidiscabies was grown in a variety of media to assess the impact of medium components on thaxtomin A (ThxA) production. ThxA biosynthesis was not correlated with bacterial biomass, nor was it stimulated by alpha-solanine or alpha-chaconine, the two most prevalent potato glycoalkaloids. ThxA production was stimulated by oat bran broth, even after exhaustive extraction, suggesting that specific carbohydrates may influence ThxA biosynthesis. Oat bran contains high levels of xylans and glucans, and both of these carbohydrates, as well as xylans from wheat and tamarind, stimulated ThxA production, but not to the same extent as oat bran. Starches and simple sugars did not induce ThxA production. The data indicate that complex carbohydrates may act as environmental signals to plant pathogenic Streptomyces, allowing production of thaxtomin and enabling bacteria to colonize its host.
Asunto(s)
Carbohidratos/farmacología , Indoles/metabolismo , Piperazinas/metabolismo , Streptomyces/efectos de los fármacos , Avena/química , Carbohidratos/química , Glucanos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solanina/análogos & derivados , Solanina/farmacología , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Triticum/química , Xilanos/farmacologíaRESUMEN
Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems.
Asunto(s)
Enfermedades de las Plantas/microbiología , Plantas/microbiología , Streptomyces/patogenicidad , Secuencia de Bases , ADN Bacteriano/genética , Enzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/microbiología , Streptomyces/clasificación , Streptomyces/genética , VirulenciaRESUMEN
Evidence for the horizontal transfer of a pathogenicity island (PAI) carrying the virulence gene nec1 and flanking sequences among Streptomyces strains in the Diastatochromogenes cluster is presented. Plant-pathogenic, thaxtomin-producing Streptomyces strains, previously classified as S. scabiei based on the conventionally used phenotypic characteristics, were found to be genetically distinct from the type strain of S. scabiei based on DNA relatedness and 16S rDNA sequence analysis. Pairwise DNA-DNA hybridizations between some of these strains and the S. scabiei type strain were as low as 36%, a value much below what is conventionally accepted for species identity (70%). The sequence of the nec1 gene, however, was identical in all the S. scabiei and S. scabiei-like strains tested, irrespective of their DNA relatedness to the type strain of S. scabiei, their geographic origin, or the isolation host. Furthermore, a 26-kb DNA fragment including and flanking nec1 was also conserved among these strains based on restriction and Southern analyses. These data indicate that the etiology of potato scab is more complex than previously recognized; this result has important implications for potato scab management strategies. Previous research has suggested that horizontal transfer of a PAI was the mechanism for evolution of pathogenicity in S. acidiscabies and S. turgidiscabies, species that lie outside of the Diastatochromogenes cluster. Data presented here support this model and indicate that PAI transfer also has occurred frequently in species closely related to S. scabiei.