Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Environ Contam Toxicol ; 82(4): 551-557, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35394169

RESUMEN

Atrazine (ATZ) is one of the pesticides mostly widely used in Brazil; several studies have shown the toxic effects of this herbicide on aquatic organisms such as fish. Thus, it is absolutely necessary finding alternatives to protect the health of fish, mainly of species commercially important for aquaculture, which may be exposed to atrazine deriving from agricultural runoff. The aim of the current study was to investigate interactions between dietary supplementation with vitamin C (Vit C) antioxidant and exposure to ATZ in Rhamdia quelen fish exposed to this herbicide. R. quelen specimens were divided into four groups: (1) CTRL, (2) VitC, (3) ATZ, (4) ATZ + VitC. Groups 3 and 4 were exposed to ATZ (10 µg L-1) for 96 h, after 30 days of VitC supplementation (1 g kg-1). Liver samples were collected for biomarker assays. Group 4 was the only group presenting decreased protein carbonyl content. Non-protein thiol (NPSH) levels were significantly higher in groups VitC, ATZ and ATZ + VitC than in CTRL. Group ATZ + VitC presented significant increase in glutatione-peroxidase (GPx) activity in comparison to the other investigated groups. Ascorbic acid (AA) levels were significantly higher in group VitC and lower in group ATZ. Therefore, interactions between herbicide ATZ and dietary supplementation with Vit C have shown biochemical changes in R. quelen fish. Thus, dietary supplements with adequate amounts of Vit C can be added as antioxidants to the diet of fish bred in aquaculture systems in order to protect them from exposure to ATZ.


Asunto(s)
Atrazina , Bagres , Herbicidas , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Ácido Ascórbico , Atrazina/toxicidad , Bagres/metabolismo , Suplementos Dietéticos , Herbicidas/toxicidad , Carbonilación Proteica , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
2.
Mol Biol Rep ; 45(6): 2631-2639, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30353476

RESUMEN

This work investigated the preventive effect of diphenyl diselenide [(PhSe)2] against the toxic effects of mercury in silver catfish (Rhamdia quelen). The animals were treated during 30 consecutive days with a (PhSe)2 supplemented feed (3.0 mg kg-1) or commercial feed. During the last 5 days the animals received a daily intraperitoneal dose of HgCl2 (1.7 mg kg-1) or Saline (0.9%). Twenty-four hours after the last HgCl2 injection, the animals were euthanized by spinal cord section to biological material obtainment. Hepatic (AST and ALT) and renal (ammonia and creatinine) toxicity biomarkers, δ-ALA-D activity, TBARS, total and non-protein thiols levels and hepatic, renal and blood mercury (Hg) and zinc (Zn) content were evaluated. Considering renal parameters, HgCl2 exposition increased serum creatinine levels and decreased δ-ALA-D activity, total and non-protein thiols and TBARS levels. HgCl2 exposure also decreased blood δ-ALA-D activity. With exception of blood δ-ALA-D activity and total thiols levels, (PhSe)2 supplementation partially prevented mercury induced alterations. Animals exposed to HgCl2 presented an increase in liver and kidney Hg content and a decrease in liver and blood Zn content. The alteration in blood Zn content was partially prevented with (PhSe)2 supplementation. With the exception of mercury and zinc content, no effects of HgCl2 exposure on hepatic tissue were observed. These results show that (PhSe)2 supplementation can represent a promising alternative to prevent the toxic effects presented by Hg exposure.


Asunto(s)
Derivados del Benceno/farmacología , Intoxicación por Mercurio/tratamiento farmacológico , Intoxicación por Mercurio/prevención & control , Compuestos de Organoselenio/farmacología , Animales , Derivados del Benceno/metabolismo , Bagres/metabolismo , Creatinina/sangre , Dieta , Suplementos Dietéticos , Femenino , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Cloruro de Mercurio/administración & dosificación , Mercurio/sangre , Intoxicación por Mercurio/sangre , Compuestos de Organoselenio/metabolismo , Compuestos de Sulfhidrilo/sangre , Zinc/sangre
3.
Ecotoxicol Environ Saf ; 151: 191-198, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29353169

RESUMEN

Atrazine (ATZ) is a herbicide worldwide used. That can cause oxidative damage in non-target organisms, such as fish. Furthermore, the threat of exposure to pesticides together with poor nutrition is hazardous to the normal development of fish, and supplementation of the fish diet with antioxidants compounds is an alternative approach to prevent the hazardous effects of pesticide exposure. Here we aimed to investigate the capacity of diphenyl diselenide (PhSe)2 diet supplementation to improve the antioxidant defense of Cyprinus carpio (carp) exposed to environmental concentrations of ATZ. To prove the efficiency of (PhSe)2, we used the Integrated Biomarkers Response (IBR) methodology. Therefore, carp were fed for 8 weeks diets either with or without (PhSe)2 and exposed to 2 or 10µg/L of ATZ for 96h, euthanized, and their liver, gills, and muscle tissues were removed for biochemical assays. ATZ was able to cause oxidative damage from reactive species production in all tissues of carp, as observed by the increase of lipid peroxidation and protein damage. The activity of some antioxidant enzymes was inhibited in carp exposed to ATZ. However, (PhSe)2 supplementation was able to prevent this ATZ-induced damage by improving the activities of antioxidant enzymes and through antioxidant competence of (PhSe)2per se. Furthermore, IBR was shown to be a useful tool to compare treatments, even at different concentrations, and identify the efficiently antioxidant behavior of the organoselenium compound.


Asunto(s)
Antioxidantes/farmacología , Atrazina/toxicidad , Derivados del Benceno/farmacología , Biomarcadores/metabolismo , Compuestos de Organoselenio/farmacología , Animales , Ácido Ascórbico/metabolismo , Carpas/metabolismo , Dieta/veterinaria , Branquias/efectos de los fármacos , Branquias/metabolismo , Herbicidas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
4.
Fish Physiol Biochem ; 42(5): 1357-68, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27048596

RESUMEN

The ability of diphenyl diselenide [(PhSe)2] to attenuate oxidative damage was evaluated in the liver, gills, brain, and muscle of carp (Cyprinus carpio) and silver catfish (Rhamdia quelen) experimentally exposed to fipronil (FPN). Initially, the fish were fed a diet without (PhSe)2 or a diet containing 3.0 mg/kg of (PhSe)2 for 60 days. After the 60-day period, the fish were exposed to 0.65 µg/L of FPN for 192 h. The results showed that carp exposed to FPN and not fed with (PhSe)2 exhibited acetylcholinesterase (AChE) inhibition in brain and muscle, and increased thiobarbituric acid-reactive substance (TBARS) in liver, gills, and brain. Furthermore, FPN decreased nonprotein thiols (NPSH) and δ-aminolevulinate dehydratase (δ-ALA-D) in carp liver and gills, and increased plasma glucose and protein levels. In silver catfish, FPN inhibited AChE and increased TBARS levels in muscle. In addition, glutathione S-transferase (GST) decreased in liver and muscle, and plasma glucose was increased. (PhSe)2 reversed some of these effects. It prevented the increase in TBARS levels in liver, gills, and brain in carp and in silver catfish muscle, and reversed the increase in plasma glucose levels in both species. Additionally, (PhSe)2 increased the NPSH levels in carp and silver catfish that had decreased in response to FPN exposure. However, (PhSe)2 was not effective in reversing the AChE inhibition in brain and muscle or the δ-ALA-D decrease in carp liver. Thus, (PhSe)2 protects tissues of both species of fish, mainly by preventing or counteracting the effects of FPN, on TBARS levels, antioxidants, and present anti-hyperglycemic property.


Asunto(s)
Derivados del Benceno/farmacología , Carpas/metabolismo , Bagres/metabolismo , Suplementos Dietéticos , Insecticidas/toxicidad , Compuestos de Organoselenio/farmacología , Pirazoles/toxicidad , Acetilcolinesterasa/metabolismo , Ácido Aminolevulínico/metabolismo , Animales , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Peces/metabolismo , Agua Dulce , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
5.
Sci Total Environ ; 542(Pt A): 231-7, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26520260

RESUMEN

The aim of this study was to evaluate the effects of dietary diphenyl diselenide [(PhSe)2] at different concentrations (1.5, 3.0, and 5.0 mg/kg) on growth, oxidative damage and antioxidant parameters in silver catfish after 30 and 60 days. Fish fed with 5.0 mg/kg of (PhSe)2 experienced a significant decrease in weight, length, and condition factor after 30 days and these parameters increased after 60 days. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC) decreased in the liver of silver catfish supplemented with (PhSe)2 after 30 days at all concentrations, while after 60 days these parameters decreased in liver, gills, brain, and muscle. Supplementation with (PhSe)2 induced a decrease in catalase (CAT) activity from liver only after 60 days of feeding. Superoxide dismutase (SOD) decreased at 5.0 mg/kg after 30 and 60 days and glutathione peroxidase (GPx) was enhanced at 1.5 and 3.0 mg/kg after 30 and 60 days. Silver catfish supplemented for 30 days showed a significant increase in liver glutathione S-transferase (GST) at 3.0 mg/kg, while after 60 days GST activity increased in liver at 1.5, 3.0, and 5.0 mg/kg and in gills at 3.0 and 5.0 mg/kg of (PhSe)2. After 30 days, non-protein thiols (NPSH) did not change, while after 60 days NPSH increased in liver, gills, brain, and muscle. In addition, ascorbic acid (AA) levels after 30 days increased in liver at three concentrations and in gills and muscle at 1.5 mg/kg, while after 60 days, AA increased at all concentrations in all and tissues tested. Thus, diet supplemented with (PhSe)2 for 60 days could be more effective for silver catfish. Although the concentration of 5.0 mg/kg showed decreased growth parameters, concentrations of 1.5 and 3.0 mg/kg, in general, decreased oxidative damage and increased antioxidant defenses.


Asunto(s)
Derivados del Benceno/toxicidad , Bagres/fisiología , Herbicidas/toxicidad , Compuestos de Organoselenio/toxicidad , Animales , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
6.
PLoS One ; 9(12): e114233, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25469630

RESUMEN

In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.


Asunto(s)
Derivados del Benceno/administración & dosificación , Bagres/metabolismo , Herbicidas/toxicidad , Compuestos de Organoselenio/administración & dosificación , Sustancias Protectoras/administración & dosificación , Quinolinas/toxicidad , Animales , Ácido Ascórbico/metabolismo , Catalasa/genética , Catalasa/metabolismo , Dieta , Suplementos Dietéticos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Estrés Oxidativo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
7.
Fish Physiol Biochem ; 40(1): 141-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23877622

RESUMEN

Several diets employed in aquaculture are enriched with selenium (Se), as it is a fundamental element to aquatic vertebrates. Diphenyl diselenide [(PhSe)2], which is a synthetic organoselenium compound, has been considered a potential antioxidant agent in different experimental models. Thus, the aim of this study was to evaluate the effects of dietary diphenyl diselenide at concentrations of 1.5, 3.0, and 5.0 mg/kg for 60 days and to determine its optimal supplemental level for carp, Cyprinus carpio. Neither growth retardation nor hepatoxicity was induced by the inclusion of diphenyl diselenide at concentrations ranging from 1.5 to 5.0 mg/kg. In addition, the inclusion of 3.0 mg/kg of diphenyl diselenide stimulated the weight and length of the carp. The supplementation with 1.5 and 3.0 mg/kg of diphenyl diselenide did not produce oxidative damage in the tissues, verified by peroxidation lipid and protein carbonyl assays. However, at 5.0 mg/kg, it caused an increase of the lipid peroxidation in the liver, brain, and muscle, and inhibited the cerebral acetylcholinesterase activity. An increase of the hepatic superoxide dismutase activity and non-protein thiols content in all tissues and ascorbic acid in the liver, gills, and brain was verified in carp fed with the diet containing 3.0 mg/kg of diphenyl diselenide. This diet had advantageous effects for the fish used in experiments. Therefore, this compound could be considered a beneficial dietary supplement for carp nutrition.


Asunto(s)
Derivados del Benceno/administración & dosificación , Carpas , Compuestos de Organoselenio/administración & dosificación , Acetilcolinesterasa/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Acuicultura , Derivados del Benceno/efectos adversos , Peso Corporal/efectos de los fármacos , Catalasa/metabolismo , Dieta , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Compuestos de Organoselenio/efectos adversos , Porfobilinógeno Sintasa/sangre , Carbonilación Proteica/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
8.
PLoS One ; 8(10): e74499, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098336

RESUMEN

In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.


Asunto(s)
Antioxidantes/farmacología , Abejas/metabolismo , Bagres/metabolismo , Fungicidas Industriales/toxicidad , Estrés Oxidativo/efectos de los fármacos , Triazoles/toxicidad , Animales , Miel/análisis , Polen/metabolismo
9.
Environ Toxicol Pharmacol ; 36(2): 706-714, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23892285

RESUMEN

The study investigated the capacity of diphenyl diselenide [(PhSe)2] (3.0mg/kg), on reduce the oxidative damage in liver, gills and muscle of carp and silver catfish exposed to clomazone (192h). Silver catfish exposed to clomazone showed increased thiobarbituric acid-reactive substance (TBARS) in liver and muscle and protein carbonyl in liver and gills. Furthermore, clomazone in silver catfish decrease non-protein thiols (NPSH) in liver and gills and glutathione peroxidase and ascorbic acid in liver. (PhSe)2 reversed the effects caused by clomazone in silver catfish, preventing increases in TBARS and protein carbonyl. Moreover, NPSH and ascorbic acid were increased by values near control. The results suggest that (PhSe)2 attenuated the oxidative damage induced by clomazone in silver catfish. The clomazone no caused an apparent situation of oxidative stress in carp, showing that this species is more resistant to this toxicant. Altogether, the containing (PhSe)2 diet helps fish to increase antioxidants defenses.


Asunto(s)
Alimentación Animal , Antioxidantes/farmacología , Derivados del Benceno/farmacología , Carpas/metabolismo , Bagres/metabolismo , Suplementos Dietéticos , Herbicidas/toxicidad , Isoxazoles/toxicidad , Compuestos de Organoselenio/farmacología , Oxazolidinonas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Dieta , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Carbonilación Proteica/efectos de los fármacos , Especificidad de la Especie , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
10.
Ecotoxicol Environ Saf ; 81: 91-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22608528

RESUMEN

The occurrence of pollutants in the aquatic environment can produce severe toxic effects on non-target organisms, including fish. These sources of contamination are numerous and include herbicides, which represent a large group of toxic chemicals. Quinclorac, an herbicide widely applied in agriculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The aim of this study was to assess if dietary diphenyl diselenide (PhSe)2 has a protective effect in tissues of fish species Cyprinus carpio exposed to the quinclorac herbicide. The fish were fed with either a standard or a diet containing 3.0 mg/Kg of diphenyl diselenide for 60 d. After were exposed to 1 mg/L of Facet® (quinclorac commercial formulation) for 192 h. At the end of the experimental period, parameters as thiobarbituric acid-reactive substance levels (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid in the liver, gills, brain and muscle were evaluated in Cyprinus carpio. In fish exposed to quinclorac and feeding with standard diet TBARS levels increased in liver and gills. However, SOD activity decreases in liver whereas no alterations were observed in catalase activity in this tissue. Quinclorac also decrease GST activity in liver and brain, NPSH in brain and muscle and ascorbic acid in muscle. Concerning protein carbonyl exposed to herbicide the fish did not show any alterations. The diphenyl diselenide supplemented diet reversed these effects, preventing increases in TBARS levels in liver and gills. GST activity was recovered to control values in liver. NPSH levels in brain and muscle increased remain near to control values. These results indicated that dietary diphenyl diselenide protects tissues against quinclorac induced oxidative stress ameliorating the antioxidant properties.


Asunto(s)
Antioxidantes/farmacología , Derivados del Benceno/farmacología , Herbicidas/toxicidad , Compuestos de Organoselenio/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Carpas , Catalasa/metabolismo , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Oxidación-Reducción , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA