Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 15(5): 8225-8243, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33938728

RESUMEN

The intensive application of nanomaterials in the food industry has raised concerns about their potential risks to human health. However, limited data are available on the biological safety of nanomaterials in food, especially at the epigenetic level. This study examined the implications of two types of synthetic amorphous silica (SAS), food-grade precipitated silica (S200) and fumed silica Aerosil 200F (A200F), which are nanorange food additives. After 28-day continuous and intermittent subacute exposure to these SAS via diet, whole-genome methylation levels in mouse peripheral leukocytes and liver were significantly altered in a dose- and SAS type-dependent manner, with minimal toxicity detected by conventional toxicological assessments, especially at a human-relevant dose (HRD). The 84-day continuous subchronic exposure to all doses of S200 and A200F induced liver steatosis where S200 accumulated in the liver even at HRD. Genome-wide DNA methylation sequencing revealed that the differentially methylated regions induced by both SAS were mainly located in the intron, intergenic, and promoter regions after 84-day high-dose continuous exposure. Bioinformatics analysis of differentially methylated genes indicated that exposure to S200 or A200F may lead to lipid metabolism disorders and cancer development. Pathway validation experiments indicated both SAS types as potentially carcinogenic. While S200 inhibited the p53-mediated apoptotic pathway in mouse liver, A200F activated the HRAS-mediated MAPK signaling pathway, which is a key driver of hepatocarcinogenesis. Thus, caution must be paid to the risk of long-term exposure to food-grade SAS, and epigenetic parameters should be included as end points during the risk assessment of food-grade nanomaterials.


Asunto(s)
Metilación de ADN , Nanoestructuras , Animales , Aditivos Alimentarios/toxicidad , Ratones , Procesamiento Proteico-Postraduccional , Dióxido de Silicio/toxicidad
2.
J Ethnopharmacol ; 270: 113783, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33421596

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Reduning injection (RDN), a popular traditional Chinese medicine, formulated by three herbs (i.e., Artemisia carvifolia Buch.-Ham. ex Roxb., Lonicera japonica Thunb., and Gardenia jasminoides J. Ellis), has been widely used to treat upper respiratory infectious diseases in China. AIM OF THE STUDY: To investigate the protective effect of RDN on both lipopolysaccharides (LPS)- and cecal ligation and puncture (CLP)-induced septic mice. To identify the potentially effective constituent, and to determine its protective effect and underlying mechanism in vivo and in vitro. MATERIALS AND METHODS: Male C57BL/6 mice were used to establish septic model by tail intravenous injection of 4 mg/kg LPS or CLP surgery. After modeling, mice were administered by tail intravenous injection of RDN in the dose of 16 or 8 mL/kg/day. The mortality, histopathology, plasma levels of inflammatory cytokines were evaluated respectively. In addition, we screened the potentially effective substances of RDN against sepsis by detecting the nitric oxide (NO) production in LPS-stimulated Raw 264.7 cells and verified the effect of luteoloside in CLP-induced septic mice subsequently. Finally, the underlying mechanisms of RDN and luteoloside were investigated in the inflammatory model in vitro. RESULTS: Administration of RDN significantly reduced the mortality and increased the survival rate in both LPS- and CLP-induced septic mice. Meanwhile, RDN reduced the release of inflammatory cytokines accompanied by alleviating the organs damage of lung, liver, and kidney in CLP-induced septic mice. Moreover, several components from Gardenia jasminoides J. Ellis extract (ZZ) or Lonicera japonica Thunb and Artemisia carvifolia Buch.-Ham. ex Roxb extract (JQ) as well as the constituents of luteoloside, quercetin, and caffeic acid were screened out to have obvious anti-inflammatory activity, which may be the potentially effective substances of RDN against sepsis. We further verified the protective role of luteoloside in CLP-induced septic mice. In addition, RDN and luteoloside significantly inhibited both the secretion and translocation of mobility group box (HMGB)1, and HMGB1-mediated activation of TLR4/NF-κB/MAPKs signaling pathways. CONCLUSION: RDN and its effective constituent luteoloside exhibited a significant protective effect against sepsis, which were potential candidate drugs for treatment of sepsis. The mechanism of antisepsis partly was related to inhibition of HMGB1/TLR4/NF-κB/MAPKs signaling pathways. The results provide an evidence base for the follow-up clinical application of RDN in treatment of sepsis.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Glucósidos/farmacología , Luteolina/farmacología , Sepsis/prevención & control , Transducción de Señal/efectos de los fármacos , Animales , Antiinfecciosos Locales/administración & dosificación , Ciego/cirugía , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Proteína HMGB1/metabolismo , Inyecciones , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Sustancias Protectoras/administración & dosificación , Células RAW 264.7 , Sepsis/etiología , Sepsis/mortalidad , Receptor Toll-Like 4/metabolismo
3.
Plant Cell Environ ; 43(2): 463-478, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31713247

RESUMEN

Transcriptional regulation is important for plants to respond to toxic effects of aluminium (Al). However, our current knowledge to these events is confined to a few transcription factors. Here, we functionally characterized a rice bean (Vigna umbellata) NAC-type transcription factor, VuNAR1, in terms of Al stress response. We demonstrated that rice bean VuNAR1 is a nuclear-localized transcriptional activator, whose expression was specifically upregulated by Al in roots but not in shoot. VuNAR1 overexpressing Arabidopsis plants exhibit improved Al resistance via Al exclusion. However, VuNAR1-mediated Al exclusion is independent of the function of known Al-resistant genes. Comparative transcriptomic analysis revealed that VuNAR1 specifically regulates the expression of genes associated with protein phosphorylation and cell wall modification in Arabidopsis. Transient expression assay demonstrated the direct transcriptional activation of cell wall-associated receptor kinase 1 (WAK1) by VuNAR1. Moreover, yeast one-hybrid assays and MEME motif searches identified a new VuNAR1-specific binding motif in the promoter of WAK1. Compared with wild-type Arabidopsis plants, VuNAR1 overexpressing plants have higher WAK1 expression and less pectin content. Taken together, our results suggest that VuNAR1 regulates Al resistance by regulating cell wall pectin metabolism via directly binding to the promoter of WAK1 and induce its expression.


Asunto(s)
Aluminio/farmacología , Pared Celular/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Pectinas/metabolismo , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Vigna/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Regulación hacia Arriba/efectos de los fármacos , Vigna/efectos de los fármacos , Vigna/genética
4.
Int J Mol Sci ; 18(9)2017 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-28846612

RESUMEN

Being an Al-accumulating crop, buckwheat detoxifies and tolerates Al not only in roots but also in leaves. While much progress has recently been made toward Al toxicity and resistance mechanisms in roots, little is known about the molecular basis responsible for detoxification and tolerance processes in leaves. Here, we carried out transcriptome analysis of buckwheat leaves in response to Al stress (20 µM, 24 h). We obtained 33,931 unigenes with 26,300 unigenes annotated in the NCBI database, and identified 1063 upregulated and 944 downregulated genes under Al stress. Functional category analysis revealed that genes related to protein translation, processing, degradation and metabolism comprised the biological processes most affected by Al, suggesting that buckwheat leaves maintain flexibility under Al stress by rapidly reprogramming their physiology and metabolism. Analysis of genes related to transcription regulation revealed that a large proportion of chromatin-regulation genes are specifically downregulated by Al stress, whereas transcription factor genes are overwhelmingly upregulated. Furthermore, we identified 78 upregulated and 22 downregulated genes that encode transporters. Intriguingly, only a few genes were overlapped with root Al-regulated transporter genes, which include homologs of AtMATE, ALS1, STAR1, ALS3 and a divalent ion symporter. In addition, we identified a subset of genes involved in development, in which genes associated with flowering regulation were important. Based on these data, it is proposed that buckwheat leaves develop conserved and distinct mechanisms to cope with Al toxicity.


Asunto(s)
Aluminio/toxicidad , Secuencia Conservada , Fagopyrum/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fagopyrum/efectos de los fármacos , Fagopyrum/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA