Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(4): 2325-2337, 2023 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-37040981

RESUMEN

The improvement of saline soil is an important issue that cannot be ignored in the farmland soil environment. The change in soil salinity will inevitably affect the soil bacterial community. This experiment was based on moderately saline soil in the Hetao Irrigation Area, conducted by applying phosphogypsum (LSG), interplanting Suaeda salsa with Lycium barbarum (JP) and applying phosphogypsum and interplanting S. salsa with L. barbarum (LSG+JP),and the local unimproved soil of a L. barbarum orchard was used as the control (CK), to explore the effects of different improvement methods on soil moisture, salinity, nutrients, and bacterial community structure diversity during the growth period of L. barbarum. The results showed that compared with that under CK, the LSG+JP treatment significantly decreased the soil EC value and pH value from the flowering stage to the deciduous stage (P<0.05), with an average decrease of 39.96% and 7.25%, respectively; the LSG+JP treatment significantly increased soil organic matter (OM) and available phosphorus (AP) content during the whole growth period (P<0.05), with an average annual increase of 81.85% and 203.50%, respectively. The total nitrogen (TN) content was significantly increased in the flowering and deciduous stages (P<0.05), with an annual average increase of 48.91%. The Shannon index of LSG+JP in the early stage of improvement was increased by 3.31% and 6.54% compared with that of CK, and the Chao1 index was increased by 24.95% and 43.26% compared with that of CK, respectively. The dominant bacteria in the soil were Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria, and the dominant genus was Sphingomonas. Compared with that in CK, the relative abundance of Proteobacteria in the improved treatment increased by 0.50%-16.27% from the flowering stage to the deciduous stage, and the relative abundance of Actinobacteria in the improved treatment increased by 1.91%-4.98% compared with that in CK in the flowering and full-fruit stages. Redundancy analysis (RDA) results showed that pH, water content (WT), and AP were important factors affecting bacterial community composition, and the correlation heatmap showed that Proteobacteria, Bacteroidetes, and EC values were significantly negatively correlated (P<0.001); Actinobacteria and Nitrospirillum were significantly negatively correlated with EC values (P<0.01). In conclusion, the application of phosphogypsum and interplanting S. salsa with L. barbarum (LSG+JP) could significantly reduce soil salinity, increase nutrients, and improve the diversity of soil bacterial community structure, which is beneficial to the long-term improvement of saline soil in the Hetao Irrigation Area and the maintenance of soil ecological health.


Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Fósforo , Sulfato de Calcio , Cloruro de Sodio , Bacterias , Proteobacteria , Bacteroidetes
2.
Small ; 14(14): e1703621, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29479803

RESUMEN

Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳106 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA