Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 46(1): 245-246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814831

Asunto(s)
Cuerpo Estriado , Tálamo
2.
Neuropsychopharmacology ; 45(9): 1454-1462, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31995814

RESUMEN

Dorsal striatal manipulations including stimulation of dopamine release and activation of medium spiny neurons (MSNs) are sufficient to drive reinforcement-based learning. Glutamatergic innervation of the striatum by the cortex and thalamus is a critical determinant of MSN activity and local regulation of dopamine release. However, the relationship between striatal glutamatergic afferents and behavioral reinforcement is not well understood. We evaluated the reinforcing properties of optogenetic stimulation of thalamostriatal terminals, which are associated with vesicular glutamate transporter 2 (Vglut2) expression, in the dorsomedial striatum (DMS), a region implicated in goal-directed behaviors. In mice expressing channelrhodopsin-2 (ChR2) under control of the Vglut2 promoter, optical stimulation of the DMS reinforced operant lever-pressing behavior. Mice also acquired operant self-stimulation of thalamostriatal terminals when ChR2 expression was virally targeted to the intralaminar thalamus. Stimulation trains that supported operant responding evoked dopamine release in the DMS and excitatory postsynaptic currents in DMS MSNs. Our previous work demonstrated that the presynaptic G protein-coupled receptor metabotropic glutamate receptor 2 (mGlu2) robustly inhibits glutamate and dopamine release induced by activation of thalamostriatal afferents. Thus, we examined the regulation of thalamostriatal self-stimulation by mGlu2. Administration of an mGlu2/3 agonist or an mGlu2-selective positive allosteric modulator reduced self-stimulation. Conversely, blockade of these receptors increased thalamostriatal self-stimulation, suggesting that endogenous activation of these receptors negatively modulates the reinforcing properties of thalamostriatal activity. These findings demonstrate that stimulation of thalamic terminals in the DMS is sufficient to reinforce a self-initiated action, and that thalamostriatal reinforcement is constrained by mGlu2 activation.


Asunto(s)
Cuerpo Estriado , Receptores de Glutamato Metabotrópico , Animales , Cuerpo Estriado/metabolismo , Ratones , Tálamo/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
3.
Neuropharmacology ; 117: 114-123, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159646

RESUMEN

The striatum plays critical roles in action control and cognition, and activity of striatal neurons is driven by glutamatergic input. Inhibition of glutamatergic inputs to projection neurons and interneurons of the striatum by presynaptic G protein-coupled receptors (GPCRs) stands to modulate striatal output and striatum-dependent behaviors. Despite knowledge that a substantial number of glutamatergic inputs to striatal neurons originate in the thalamus, most electrophysiological studies assessing GPCR modulation do not differentiate between effects on corticostriatal and thalamostriatal transmission, and synaptic inhibition is frequently assumed to be mediated by activation of GPCRs on corticostriatal terminals. We used optogenetic techniques and recently-discovered pharmacological tools to dissect the effects of a prominent presynaptic GPCR, metabotropic glutamate receptor 2 (mGlu2), on corticostriatal vs. thalamostriatal transmission. We found that an agonist of mGlu2 and mGlu3 induces long-term depression (LTD) at synapses onto MSNs from both the cortex and the thalamus. Thalamostriatal LTD is selectively blocked by an mGlu2-selective negative allosteric modulator and reversed by application of an antagonist following LTD induction. Activation of mGlu2/3 also induces LTD of thalamostriatal transmission in striatal cholinergic interneurons (CINs), and pharmacological activation of mGlu2/3 or selective activation of mGlu2 inhibits CIN-mediated dopamine release evoked by selective stimulation of thalamostriatal inputs. Thus, mGlu2 activation exerts effects on striatal physiology that extend beyond modulation of corticostriatal synapses, and has the potential to influence cognition and striatum-related disorders via inhibition of thalamus-derived glutamate and dopamine release.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Tálamo/fisiología , Animales , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
4.
Biochem J ; 435(2): 327-36, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21281269

RESUMEN

DHA (docosahexaenoic acid, C22:6,n-3) has been shown to promote neurite growth and synaptogenesis in embryonic hippocampal neurons, supporting the importance of DHA known for hippocampus-related learning and memory function. In the present study, we demonstrate that DHA metabolism to DEA (N-docosahexaenoylethanolamide) is a significant mechanism for hippocampal neuronal development, contributing to synaptic function. We found that a fatty acid amide hydrolase inhibitor URB597 potentiates DHA-induced neurite growth, synaptogenesis and synaptic protein expression. Active metabolism of DHA to DEA was observed in embryonic day 18 hippocampal neuronal cultures, which was increased further by URB597. Synthetic DEA promoted hippocampal neurite growth and synaptogenesis at substantially lower concentrations in comparison with DHA. DEA-treated neurons increased the expression of synapsins and glutamate receptor subunits and exhibited enhanced glutamatergic synaptic activity, as was the case for DHA. The DEA level in mouse fetal hippocampi was altered according to the maternal dietary supply of n-3 fatty acids, suggesting that DEA formation is a relevant in vivo process responding to the DHA status. In conclusion, DHA metabolism to DEA is a significant biochemical mechanism for neurite growth, synaptogenesis and synaptic protein expression, leading to enhanced glutamatergic synaptic function. The novel DEA-dependent mechanism offers a new molecular insight into hippocampal neurodevelopment and function.


Asunto(s)
Ácidos Docosahexaenoicos/análogos & derivados , Etanolaminas/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Neuronas/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ácidos Docosahexaenoicos/farmacología , Evaluación Preclínica de Medicamentos , Embrión de Mamíferos , Endocannabinoides , Femenino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Ratones Endogámicos C57BL , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neurogénesis/efectos de los fármacos , Neuronas/fisiología , Embarazo
5.
J Neurochem ; 111(2): 510-21, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19682204

RESUMEN

Docosahexaenoic acid (DHA, 22:6n-3), the major polyunsaturated fatty acid accumulated in the brain during development, has been implicated in learning and memory, but underlying cellular mechanisms are not clearly understood. Here, we demonstrate that DHA significantly affects hippocampal neuronal development and synaptic function in developing hippocampi. In embryonic neuronal cultures, DHA supplementation uniquely promoted neurite growth, synapsin puncta formation and synaptic protein expression, particularly synapsins and glutamate receptors. In DHA-supplemented neurons, spontaneous synaptic activity was significantly increased, mostly because of enhanced glutamatergic synaptic activity. Conversely, hippocampal neurons from DHA-depleted fetuses showed inhibited neurite growth and synaptogenesis. Furthermore, n-3 fatty acid deprivation during development resulted in marked decreases of synapsins and glutamate receptor subunits in the hippocampi of 18-day-old pups with concomitant impairment of long-term potentiation, a cellular mechanism underlying learning and memory. While levels of synapsins and NMDA receptor subunit NR2A were decreased in most hippocampal regions, NR2A expression was particularly reduced in CA3, suggesting possible role of DHA in CA3-NMDA receptor-dependent learning and memory processes. The DHA-induced neurite growth, synaptogenesis, synapsin, and glutamate receptor expression, and glutamatergic synaptic function may represent important cellular aspects supporting the hippocampus-related cognitive function improved by DHA.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Hipocampo/citología , Potenciación a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Células Cultivadas , Ácidos Docosahexaenoicos/metabolismo , Femenino , Ácido Glutámico/metabolismo , Hipocampo/embriología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Neuritas/efectos de los fármacos , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Embarazo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Sinapsinas/metabolismo , Transmisión Sináptica/fisiología
6.
Eur J Pharmacol ; 442(3): 215-23, 2002 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-12065074

RESUMEN

Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine.


Asunto(s)
Proteínas Portadoras/metabolismo , Café/química , Ácidos Cumáricos/farmacología , Lactonas/farmacología , Proteínas de Transporte de Membrana , Animales , Conducta Animal/efectos de los fármacos , Unión Competitiva/efectos de los fármacos , Encéfalo/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacocinética , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inyecciones Intraperitoneales , Lactonas/metabolismo , Lactonas/farmacocinética , Masculino , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Proteínas de Transporte de Nucleósidos , Ácido Quínico/química , Ácido Quínico/metabolismo , Ensayo de Unión Radioligante , Factores de Tiempo , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA