Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654538

RESUMEN

The cultivated variety of Chinese yam (Dioscorea polystachya Turcz. cv. Tiegun) is an economically important plant, capable of producing tubers that are used as food and traditional Chinese medicine. The basal stem rot was found on approximately 65% of yam (tuber expansion stage) in a total of 10 ha field in Wuzhi, Wen, and Hua counties, Henan, China (Sep 2021). Dark brown fusiform lesions initially occurred at the stems basal, irregularly extending to join together and leading to loop-stem necrotic indentation. Three diseased samples from Wuzhi county were collected, cut into 5 × 5 mm pieces, surface sterilized in 75% ethanol (30 s) and 1% NaClO (1 min), washed in sterile water 3 times, and placed on PDA in the dark for 3 days at 28℃. A total of 44 isolates forming three groups of Fusarium colonies were obtained using monosporic isolation, of which 19, 8, and 17 isolates were identified as F. oxysporum, F. solani, and F. proliferatum based on colony morphology, respectively. Typical isolates SYJJ6, 9, and 10 for each group were further studied. The SYJJ6 colonies showed gray white abundant fluffy aerial mycelium with rough edges, formation of ellipsoid, unicellular microconidia without septa, 5.6 to 13.4 × 2.4 to 4.7 µm (n = 50), and sickle-shaped, slightly curved macroconidia with 2 to 4 septa, 14.0 to 23.9 × 3.4 to 5.1 µm (n = 50). Isolate SYJJ9 produced flocculent white colonies, grew in a circular pattern with a sharp edge, forming oval or oblong microconidia with zero or one septum, 11.2 to 18.8 × 3.4 to 6.2 µm (n = 50), and slightly curved macroconidia with 2 to 3 septa, 27.6 to 44.0 × 3.9 to 7.4 µm (n = 50). SYJJ10 produced whitish or pinkish white colonies with fluffy aerial mycelium and a red pigmentation, produced renal or oval microconidia with no septa, 5.1 to 11.8 × 1.8 to 4.2 µm (n = 50), and falcate, slightly curved macroconidia with 3 to 4 septa, 16.1 to 30.2 × 3.1 to 5.9 µm (n = 50). Additionally, TUB, EF-1α, and RPB2 genes were amplified with primers BT2a/BT2b, EF1/EF2, and 5f2/-7cr, respectively (Glass and Donaldson 1995; O'Donnell et al. 1998, 2010). BLASTn analysis on SYJJ6 (OR047663, OR047666, OR047669), SYJJ9 (OR047665, OR047667, OR047670), and SYJJ10 (OR047664, OR047668, OR047671) gene sequences were over 99% identical to those of F. oxysporum (100%, MK432917; 100%, MN417196; 99.61%, MN457531), F. solani (100%, MF662662; 100%, MN223440; 99.80%, CP104055), and F. proliferatum (100%, ON557521; 100%, ON458137; 99.90%, LT841266), respectively. Pathogenicity tests of three isolates were separately performed on 60-day-old yam seedlings. The basal stems were wounded using needle, and the wounds were wrapped with cotton balls soaked with conidial suspension (1 mL, 3×106 conidia/mL) or water (control). Each isolate treated three plants and repeated three times. All plants were grown at 28℃ under a 16/8-h light/dark cycle. Typical symptoms emerged on basal stems at 16, 13, and 17 days after inoculation with the conidia of isolates SYJJ6, 9, and 10, while the control basal stems appeared healthy. The re-isolated fungi were identical to the original three isolates. Fusarium species (F. oxysporum, F. commune, F. humuli, etc.)were previously reported to cause wilt or stem rot on different D. polystachya cultivars (Fang et al. 2020; Li et al. 2023; Zhao et al. 2013), or basal stem rot on Panax ginseng (Ma et al. 2020). This is the first report of Chinese yam basal stem rot caused by Fusarium species, which threatens the production of Chinese yam 'Tiegun' and should be further studied.

2.
Plant Dis ; 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37981571

RESUMEN

Honeysuckle flower (Lonicera japonica Thunb.) is a traditional Chinese medicinal plant. It is perennial and widely cultivated in China, Japan and Korea. From late August to October in 2021 and 2022, leaf spots symptoms were observed on L. japonica in different planting fields in Yuzhou, Yuanyang and Fenqiu districts, Henan province, China. The disease incidence was above 85% which reduce photosynthesis. Early disease symptoms appeared as small, circular to elliptical, brown spots on the leaves and later the lesions (1 to 5 mm × 1 to 4 mm) slowly developed yellow haloes. The different brown lesions seldom merge and form larger irregular lesions. Small fragments (3 to 5 mm) of leave tissue were excised from the lesion margins and surface-sterilized in 3% NaClO for 3 min, followed by three washes with sterile distilled water, and then placed on potato dextrose agar (PDA) and incubated at 25°C in the dark for 5 days. A total number of 8 cultures were obtained and purified by single-spore subcultures on PDA for morphological identification. The colonies on PDA were whitish to gray, with cottony aerial mycelium. Conidiophores were fasciculate, olivaceous brown, straight or geniculate, uniform in width, multiseptate, and ranged from 290 to 700 µm (560 µm on average, n = 20). Conidia were hyaline, slightly curved or straight, needle shaped, truncate at the base, and terminal at the tip, 3 to 17-septate, and measuring 150 to 240 µm (180 µm on average, n = 20). The morphological features were consistent with Cercospora cf. flagellaris Ellis & G. Martin (Groenewald et al. 2013). The genomic DNA was extracted using CTAB method. The nuclear ribosomal internal transcribed spacer region (ITS), portions of the actin (ACT), histone H3 (HIS3), and translation elongation factor 1-α (TEF1) genes were amplified using primers ITS1/ITS4 (Groenewald et al. 2013), ACT-512F/ACT-783R (Carbone and Kohn 1999), CYLH3F/CYLH3R (Crous et al. 2006), and EF1-728F/EF1-986R (Carbone and Kohn 1999). The resulting 537-bp ITS, 226-bp ACT, 410-bp HIS3, and 306-bp TEF1 sequences of isolate JDJ002 were deposited in GenBank (accession nos. OR492367, OR548247, OR548248 and OR548248, respectively). Sequence analysis revealed that ITS, ACT, HIS3 and TEF1α sequences exhibited ≥99% of identity with the ITS (KP896013), ACT(KP895965), HIS3(MK991295) and TEF1 (MN180408) sequences of C. cf. flagellaris, respectively. A pathogenicity test was conducted on healthy of L. japonica leaves. The healthy leaves pricked from L. japonica plants, rinsed in autoclaved distilled water three times and dried with distilled filter paper. Then twelve healthy leave were inoculated with a mycelial plug (0.4 cm diameter) harvested from the periphery of two week-old colony. As negative control, leaves inoculated with PDA medium plugs. Inoculated leaves were covered with plastic bags to maintain high relative humidity and incubated at 25°C in growth chamber. After 7 days, the inoculated leaves showed symptoms identical to those observed in the field under natural conditions, whereas negative control remained symptom-free. Re-isolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was C. cf. flagellaris. Pathogenicity tests were repeated three times by the same methods with the same results. To our knowledge, this is the first report of C. cf. flagellaris except Cercospora rhamni Fack., Alternaria alternata, Corynespora cassiicola or Phomopsis sp. causing leave spots on L. japonica in China.

3.
Pestic Biochem Physiol ; 194: 105465, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532342

RESUMEN

Isoxadifen-ethyl (IDF) and cyprosulfamide (CSA) can effectively protect maize from nicosulfuron (NIC) injury, while mefenpyr-diethyl (MPR) and fenchlorazole-ethyl (FCO) did not. Their chemical diversity and requirement to use them in combination with the corresponding herbicides suggest that their elicitation of gene expression are complex and whether it is associated with the safening activity remains elusive. In this study, our first objective was to determine whether or not the ability of four safeners to enhance the metabolic rate of nicosulfuron. It was found that nicosulfuron degradation in maize was accelerated by IDF and CSA, but not by FCO and MPR. Transcriptomic analysis showed that the number of genes induced by IDF and CSA were larger than that induced by FCO and MPR. Overall, 34 genes associated with detoxification were identified, including glutathione S-transferase (GST), cytochrome P450 (CYP450), UDP-glucosyltransferase (UGT), transporter and serine. Moreover, 14 detoxification genes were screened for further verification by real-time PCR in two maize inbred lines. Two maize inbred lines exhibited high expression levels of four genes (GST31, GST39, AGXT2 and ADH) after IDF treatment. GST6, GST19, MATE, SCPL18 and UF3GT were specifically up-regulated in telerant maize inbred line under IDF and IDF + NIC treatments. Seven genes, namely GST31, GST6, GST19, UF3GT, MATE, ADH and SCPL18, are induced by IDF and CSA to play a vital role in regulating the detoxification process of NIC. Accordingly, the GST activity in maize was accelerated by IDF and CSA, but not by FCO and MPR. This result is consistent with transcriptome and metabolic data.These results indicate that the mitigation of NIC damage is associated with enhanced herbicide metabolism. IDF and CSA were more effective in protecting maize from NIC injury due to their ability to enhance the detoxification of specific types of herbicides, compared to FCO and MPR. The chemical specificity of four safeners is attributed to the up-regulated genes related to the detoxification pathway.


Asunto(s)
Herbicidas , Zea mays , Transcriptoma , Piridinas/farmacología , Herbicidas/toxicidad , Herbicidas/metabolismo
4.
Plant Dis ; 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35286130

RESUMEN

Rehmannia glutinosa (family Scrophulariaceae) is an important traditional medicinal plant, whose root is used to treat anemia, hemoptysis, and gynecological diseases in China (Matsumoto et al. 1989). This plant is native to China and cultivated in China, Korea, Japan, and northern Vietnam (Kwak et al. 2020). Viral diseases caused remarkable loss in the yield and quality of R. glutinosa (Ling et al. 2009). To date, ten viruses have been identified globally to infect R. glutinosa and seven of these viruses reported in China (Liu et al. 2018; Zhang et al. 2021). Most plants of R. glutinosa are infected with one or more of these viruses (Kwak et al. 2018; Zhang et al. 2004). In July 2020, a survey of the viral disease infecting R. glutinosa was conducted in commercial plantations of Wenxian, Wuzhi, Mengzhou, and Yuzhou counties in Henan Province, China. The disease symptoms included mosaic, chlorosis, leaf distortion, and the percentage of symptomatic plants was over 70% in the surveyed fields (n=9). Sixty leaf samples of symptomatic R. glutinosa plants were collected from nine cultivation fields in Wenxian, Wuzhi, Mengzhou, and Yuzhou counties (five to seven plants for each field). Total RNA was extracted from one pooled sample containing a portion of all above-mentioned leaf samples using RNAprep Pure Plant Plus Kit (TIANGEN Biotech, Beijing, China) and analyzed by high-throughput sequencing (HTS) to identify viral pathogens. A transcriptome library was generated using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA), and sequenced on an Illumina NovaSeq6000 sequencing system at Berry Genomics Corporation (Beijing, China). A total of 27,664,949 high-quality clean reads were obtained after trimming and used for contig assembly. The assembled contigs (n=109,180) were searched using Basic Local Alignment Search Tool (BLAST) at GenBank. BLASTn analysis showed that the R. glutinosa plants were infected with known viruses, including broad bean wilt virus, rehmannia mosaic virus, youcai mosaic virus, and cucurbit chlorotic yellows virus. In addition, one contig (6,418 nt in length) had a nucleotide sequence identity of 99.64% with the TN29 isolate of tobacco mild green mosaic virus (TMGMV, GenBank accession no. MF139550). To confirm the presence of this virus, sixty above-mentioned samples were screened by reverse transcription-polymerase chain reaction (RT-PCR) using the specific primer pairs (Supplementary Table1) TMGMG-CPF/TMGMG-CPR targeting a 545-nt fragment within the CP gene. Amplicons with expected sizes were detected from 47 of 60 samples but not from the negative control (virus-free healthy plant through the tip meristem culture). Seventeen amplicons (11#, 13#, 14#, 21#, 22#, 23#, 25#, 26#, 27#, 31#, 32#, 33#, 37#, 52#, 57#, 59#, and 60#) of TMGMV-CP were selected, and purified. The PCR products were cloned into the pMD19-T vector (TAKARA Biotech, Dalian, China) and sequenced. The sequences were deposited into the GenBank (accession nos. MZ395944 to MZ395960). The near-full-length genomic sequence of TMGMV-Rg14 isolate was obtained from one positive sample (sample no. 14) by RT-PCR amplification of two overlapping fragments using the following primer pairs: TMGMV-40F/TMGMV-3570R and TMGMV-3220F/TMGMV-6400R. The near-full-length genomic sequence of the TMGMV-Rg14 isolate was 6 304 nucleotides (nt) in length and deposited into GenBank (accession no. MZ395975). BLASTn analysis demonstrated that the TMGMV-Rg14 isolate shared a sequence identity ranging from 96.89% (AB078435) to 99.60% (MF139550) with the other TMGMV isolates. Furthermore, the virus-free healthy R. glutinosa plants were inoculated with sap from the positive sample (14#) to confirm the infection of TMGMV. Mosaic symptoms were induced on the systemically infected leaves of the inoculated plants 14 days post inoculation. The systemically infected leaves of inoculated plants were assayed by RT-PCR using the primer pairs TMGMV-CPF/CPR. Amplicons of expected size were detected from the inoculated plants but not from non-inoculated plants. To our knowledge, this is the first report of TMGMV infection on R. glutinosa. Further studies are necessary to select a suitable indicator plant for this TMGMV, its host range, and the symptoms it induces in single infection. Since R. glutinosa is cultivated by vegetative propagation, production of virus-free healthy plants is necessary. This study will help to generate virus-free healthy plants and prevent viral disease on R. glutinosa. Further study is needed to determine its pathological implications and economic impact on R. glutinosa in China.

5.
Plant Dis ; 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320041

RESUMEN

Salvia miltiorrhiza Bunge is a herb plant used as a traditional Chinese medicine to cure cardiovascular disease. In December 2018, a root rot disease was observed on S. miltiorrhiza in four surveyed counties (Song, Yuzhou, Fangcheng, and Mianchi) in Henan province in China. The disease incidence ranged from 15 to 50% in 12 surveyed fields. At the early stage, the diseased plants were wilting with purple leaves. Leaves and branches became withered and fibrous roots became brown and rotted. The main roots of severely diseased plants also became rotted. The color of the stem surface turned from red to black, and the color of the stem xylem and phloem turned from dark red to brown. Eventually, the roots of diseased plants became completely rotted and the whole plants became dead, but no stink, which is different from Fusarium solani (Mart.) Sacc. (Yuan et al. 2015). Diseased root tissues (5×5×5 mm in size) were cut from diseased plants, surface-sterilized with 1% sodium hypochlorite for 1 min followed by dipping in 75% alcohol for 30 sec, rinsed in sterile distilled water for 3 times, air-dried on a sterilized filter paper in a laminar flow hood, placed on potato dextrose agar (PDA) containing 250 mg/l of streptomycin sulfate, and incubated at 28℃. Five isolates of Fusarium were obtained and purified using the single-spore isolation method. On PDA plates, the colonies were purple in color with formation of white aerial mycelia and reached 50 to 60 mm in diameter after incubation for 5 days. The colonies produced abundant microconidia on the colonies. The microconidia were 4.3 to 12.3 (10.0) × 2.1 to 3.5 (3.1) µm in size (n = 40), hyaline, ovoid or ellipse in shape. The conidiogenous cells were polyphialides. On mung bean media, the isolates formed macroconidia with 3 to 6 septae, fusiform in shape, slightly curved, 21.8 to 32.7 (31.4) × 2.6 to 4.3 (3.4) µm in size (n = 50). The morphological features of the five isolates were consistent with the description for Fusarium proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg (Leslie and Summerell 2006). To further define the identity of the five isolates, molecular phylogenetic analysis was performed. The genomic DNA was extracted from all five isolates using the cetyl trimethylammonium bromide (CTAB) method. Five genes [nuclear ribosomal internal transcribed spacer (ITS) region, translation elongation factor 1-α (EF1α), ß-tubulin gene, partial sequence for calmodulin (PRO), and RNA-dependent DNA polymerase II subunit (RPB2)] in F. proliferatum were amplified using primers pairs ITS1/ITS4, EF1T/2T, ß-tubulin 2a/b, PRO1/2, and RPB2F/R, respectively (Glass and Donaldson 1995; Liu et al. 1999; Mulè 2004; O'Donnell et al. 1998; O'Donnell et al., 2010). The sequences (GenBank accession numbers: MT371373, MT371384, MT925651, MT925652, and MT934441, respectively) showed 99.6 to 100% identities to the corresponding DNA sequences in F. proliferatum (GenBank Acc. Nos. MK243486, MN245720, KJ12896, MN245721, and MK144327, respectively). All five isolates were tested for pathogenicity to fulfill the Koch's postulates. The 45-day-old healthy plants of S. miltiorrhiza grown in sterilized soil in pots (20 cm in diameter), one plant in one pot, were inoculated with conidial suspensions (1.0 × 107 cfu/ml) by pouring 10 ml conidial suspensions around the stem base in one pot. For each isolate, four plants were inoculated. Four plants were treated with sterilized water in the same volume as a control. The tested plants were placed in a growth room at 25°C (RH > 60%) with a 12 h photoperiod of fluorescent light. The pathogenicity assay was repeated for three times. The similar wilt symptoms were observed on the roots in the inoculated plants 30 days after inoculation but were not observed in the control plants. F. proliferatum was re-isolated from the infected roots, and its identity was confirmed by PCR with the primers described above. To our knowledge, this is the first report of F. proliferatum casing root rot disease on S. miltiorrhiza in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA