Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Curr Drug Metab ; 23(1): 2-7, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34994324

RESUMEN

Dosing time-dependency of pharmacokinetics (or chronopharmacokinetics) has been long recognized. Studies in recent years have revealed that daily rhythmicity in expression of drug-metabolizing enzymes and transporters (DMETs) are key factors determining chronopharmacokinetics. In this article, we briefly summarize current knowledge with respect to circadian mechanisms of DMETs and discuss how rhythmic DMETs are translated to drug chronoeffects. More importantly, we present our perspectives on pharmacokinetics-based chronotherapy.


Asunto(s)
Relojes Circadianos , Cronofarmacocinética , Cronoterapia , Ritmo Circadiano , Humanos
2.
Front Pharmacol ; 13: 1088294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618934

RESUMEN

Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.

3.
Nat Nanotechnol ; 16(10): 1150-1160, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34354264

RESUMEN

Although nanomaterials have shown promising biomedical application potential, incomplete understanding of their molecular interactions with biological systems prevents their inclusion into mainstream clinical applications. Here we show that black phosphorus (BP) nanomaterials directly affect the cell cycle's centrosome machinery. BP destabilizes mitotic centrosomes by attenuating the cohesion of pericentriolar material and consequently leads to centrosome fragmentation within mitosis. As a result, BP-treated cells exhibit multipolar spindles and mitotic delay, and ultimately undergo apoptosis. Mechanistically, BP compromises centrosome integrity by deactivating the centrosome kinase polo-like kinase 1 (PLK1). BP directly binds to PLK1, inducing its aggregation, decreasing its cytosolic mobility and eventually restricting its recruitment to centrosomes for activation. With this mechanism, BP nanomaterials show great anticancer potential in tumour xenografted mice. Together, our study reveals a molecular mechanism for the tumoricidal properties of BP and proposes a direction for biomedical application of nanomaterials by exploring their intrinsic bioactivities.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centrosoma/efectos de los fármacos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Fósforo/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Células HeLa , Xenoinjertos , Humanos , Ratones , Mitosis/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Fósforo/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Quinasa Tipo Polo 1
4.
Front Pharmacol ; 12: 707844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393786

RESUMEN

Identifying drugs with dosing time-dependent effects (chronoeffects) and understanding the underlying mechanisms would help to improve drug treatment outcome. Here, we aimed to determine chronoeffects of the herbal medicines Puerariae radix (PR) and Coptidis rhizoma (CR), and investigate a potential role of REV-ERBα as a drug target in generating chronoeffects. The pharmacological effect of PR on hyperhomocysteinemia in mice was evaluated by measuring total homocysteine, triglyceride levels and lipid accumulation. PR dosed at ZT10 generated a stronger effect on hyperhomocysteinemia than drug dosed at ZT2. Furthermore, PR increased the expression levels of REV-ERBα target genes Bhmt, Cbs and Cth (encoding three key enzymes responsible for homocysteine catabolism), thereby alleviating hyperhomocysteinemia in mice. Moreover, CR attenuated chronic colitis in mice in a dosing time-dependent manner based on measurements of disease activity index, colon length, malondialdehyde/myeloperoxidase activities and IL-1ß/IL-6 levels. ZT10 dosing generated a stronger anti-colitis effect as compared to ZT2 dosing. This was accompanied by lower production of colonic inflammatory cytokines (i.e., Nlrp3, IL-1ß, IL-6, Tnf-α and Ccl2, REV-ERBα target genes) in colitis mice dosed at ZT10. The diurnal patterns of PR and CR effects were respectively consistent with those of puerarin (a main active constituent of PR, a REV-ERBα antagonist) and berberine (a main active constituent of CR, a REV-ERBα agonist). In addition, loss of Rev-erbα in mice abolished the dosing time-dependency in PR and CR effects. In conclusion, the therapeutic effects of PR and CR depend on dosing time in mice, which are probably attributed to diurnal expression of REV-ERBα as the drug target. Our findings have implications for improving therapeutic outcomes of herbal medicines with a chronotherapeutic approach.

5.
Xenobiotica ; 51(9): 1019-1028, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34311664

RESUMEN

1. Retrorsine (RTS) is a pyrrolizidine alkaloid (distributed in many medicinal plants) that has significant hepatotoxicity. Here, we aimed to determine the daily variations in RTS hepatotoxicity (chronotoxicity) in mice, and to investigate the role of metabolism in generating RTS chronotoxicity.2. Acute toxicity and pharmacokinetic studies were performed with mice after RTS administration at different times of the day. Hepatotoxicity was assessed by measuring plasma ALT (alanine aminotransferase) and AST (aspartate aminotransferase) levels. mRNA and proteins were determined by qPCR and Western blotting, respectively. Time-dependent in vitro metabolism of RTS was assessed by using mouse liver microsomes.3. We found that RTS toxicity was more severe in the dark phase (zeitgeber time 14 or ZT14 and ZT18) than in the light phase (ZT2 and ZT6). This chronotoxicity was associated with a dosing time difference in the systemic exposures of RTS and a pyrrolic ester metabolite (a cause of hepatotoxicity, measured by the levels of pyrrole-GSH conjugate and pyrrole-protein adducts due to a high chemical reactivity). Moreover, the CYP3A11 (a major enzyme for RTS bioactivation) inhibitor ketoconazole decreased the production of pyrrole-GSH conjugate and abrogated diurnal rhythm in RTS metabolism. In addition, E4bp4 (a circadian regulator of Cyp3a11) ablation abolished the rhythm of CYP3A11 expression and abrogated the dosing time-dependency of RTS toxicity.4. In conclusion, RTS chronotoxicity in mice was attributed to time-varying hepatic metabolism regulated by the circadian clock. Our findings have implications for reducing pyrrolizidine alkaloid-induced toxicity via a chronotherapeutic approach.


Asunto(s)
Relojes Circadianos , Alcaloides de Pirrolicidina , Alanina Transaminasa , Animales , Ritmo Circadiano , Citocromo P-450 CYP3A/genética , Hígado , Proteínas de la Membrana , Ratones , Alcaloides de Pirrolicidina/toxicidad
6.
J Pharm Pharmacol ; 73(3): 398-409, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33793874

RESUMEN

OBJECTIVES: We aimed to determine the circadian responses of mice to Semen Strychni and to investigate the role of pharmacokinetics in generating chronotoxicity. METHODS: Total extract of Semen Strychni was administered by oral gavage to wild-type (WT) and Bmal1-/- (a circadian clock-deficient model) mice at different circadian time points for toxicity (including survival) and pharmacokinetic characterization. Nephrotoxicity and neurotoxicity were evaluated by measuring plasma creatinine and creatine kinase BB (CK-BB), respectively. Drug metabolism and transport assays were performed using liver/intestine microsomes and everted gut sacs, respectively. KEY FINDINGS: Semen Strychni nephrotoxicity and neurotoxicity as well as animal survival displayed significant circadian rhythms (the highest level of toxicity was observed at ZT18 and the lowest level at ZT2 to ZT6). According to pharmacokinetic experiments, herb dosing at ZT18 generated higher plasma concentrations (and systemic exposure) of strychnine and brucine (two toxic constituents) compared with ZT6 dosing. This was accompanied by reduced formation of both dihydroxystrychnine and strychnine glucuronide (two strychnine metabolites) at ZT18. Bmal1 ablation sensitized mice to Semen Strychni-induced toxicity (with increased levels of plasma creatinine and CK-BB) and abolished the time dependency of toxicity. Metabolism of Semen Strychni (strychnine and brucine) in the liver and intestine microsomes of WT mice was more extensive at ZT6 than at ZT18. These time differences in hepatic and intestinal metabolism were lost in Bmal1-/- mice. Additionally, the intestinal efflux transport of Semen Strychni (strychnine and brucine) was more extensive at ZT6 than ZT18 in WT mice. However, the time-varying transport difference was abolished in Bmal1-/- mice. CONCLUSIONS: Circadian responses of mice to Semen Strychni are associated with time-varying efflux transport and metabolism regulated by the circadian clock (Bmal1). Our findings may have implications for optimizing phytotherapy with Semen Strychni via timed delivery.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano/fisiología , Extractos Vegetales/toxicidad , Strychnos nux-vomica/química , Animales , Transporte Biológico , Relojes Circadianos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas/metabolismo , Síndromes de Neurotoxicidad/etiología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacocinética , Estricnina/análogos & derivados , Estricnina/farmacocinética , Estricnina/toxicidad , Factores de Tiempo
7.
J Pharm Pharmacol ; 72(12): 1854-1864, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32478421

RESUMEN

OBJECTIVES: We aimed to determine the diurnal rhythm of Tripterygium wilfordii (TW) hepatotoxicity and to investigate a potential role of metabolism and pharmacokinetics in generating chronotoxicity. METHODS: Hepatotoxicity was determined based on assessment of liver injury after dosing mice with TW at different circadian time points. Circadian clock control of metabolism, pharmacokinetics and hepatotoxicity was investigated using Clock-deficient (Clock-/- ) mice. KEY FINDINGS: Hepatotoxicity of TW displayed a significant circadian rhythm (the highest level of toxicity was observed at ZT2 and the lowest level at ZT14). Pharmacokinetic experiments showed that oral gavage of TW at ZT2 generated higher plasma concentrations (and systemic exposure) of triptolide (a toxic constituent) compared with ZT14 dosing. This was accompanied by reduced formation of triptolide metabolites at ZT2. Loss of Clock gene sensitized mice to TW-induced hepatotoxicity and abolished the time-dependency of toxicity that was well correlated with altered metabolism and pharmacokinetics of triptolide. Loss of Clock gene also decreased Cyp3a11 expression in mouse liver and blunted its diurnal rhythm. CONCLUSIONS: Tripterygium wilfordii chronotoxicity was associated with diurnal variations in triptolide pharmacokinetics and circadian expression of hepatic Cyp3a11 regulated by circadian clock. Our findings may have implications for improving TW treatment outcome with a chronotherapeutic approach.


Asunto(s)
Proteínas CLOCK/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ritmo Circadiano/efectos de los fármacos , Diterpenos/toxicidad , Hígado/efectos de los fármacos , Fenantrenos/toxicidad , Extractos Vegetales/toxicidad , Tripterygium/toxicidad , Activación Metabólica , Animales , Proteínas CLOCK/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Diterpenos/aislamiento & purificación , Diterpenos/farmacocinética , Compuestos Epoxi/aislamiento & purificación , Compuestos Epoxi/farmacocinética , Compuestos Epoxi/toxicidad , Hígado/metabolismo , Hígado/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenantrenos/aislamiento & purificación , Fenantrenos/farmacocinética , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacocinética , Toxicocinética
8.
Drug Metab Dispos ; 48(5): 395-406, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32114506

RESUMEN

Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor γ are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT: Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.


Asunto(s)
Relojes Circadianos/genética , Cronoterapia de Medicamentos , Tasa de Depuración Metabólica/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Animales , Humanos , Modelos Animales , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Elementos de Respuesta , Activación Transcripcional , Resultado del Tratamiento
9.
Chin J Nat Med ; 16(11): 871-880, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30502769

RESUMEN

Poliumoside is representative of phenylethanoid glycosides, which are widely found in many plants. Poliumoside is also regarded as the main active component of Callicarpa kwangtungensis Chun (CK), though its oral bioavailability in rat is extremely low (0.69%) and its in vivo and in vitro metabolism has not yet been systematically investigated. In the present study, an ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method was employed to identify the metabolites and investigate the metabolic pathways of poliumoside in rat after oral administration 1.5 g·kg-1 of poliumoside. As a result, a total of 34 metabolites (30 from urine, 17 from plasma, and 4 from bile) and 9 possible metabolic pathways (rearrangment, reduction, hydration, hydrolyzation, dehydration, methylation, hydroxylation, acetylation, and sulfation) were proposed in vivo. The main metabolite, acteoside, was quantified after incubated with rat intestinal bacteria in vitro. In conclusion, the present study systematically explored the metabolites of poliumoside in vivo and in vitro, proposing metabolic pathways that may be significant for further metabolic studies of poliumoside.


Asunto(s)
Bacterias/metabolismo , Bilis/química , Ácidos Cafeicos/química , Callicarpa/química , Medicamentos Herbarios Chinos/química , Glicósidos/química , Intestinos/microbiología , Plasma/química , Orina/química , Administración Oral , Animales , Ácidos Cafeicos/administración & dosificación , Ácidos Cafeicos/sangre , Ácidos Cafeicos/orina , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Glicósidos/administración & dosificación , Glicósidos/sangre , Glicósidos/orina , Masculino , Espectrometría de Masas/métodos , Estructura Molecular , Ratas , Ratas Sprague-Dawley
10.
Xenobiotica ; 47(5): 369-375, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27314830

RESUMEN

1. Bakuchiol, one of the main active compounds of Psoralea corylifolia, possesses a variety of pharmacological activities such as anti-tumor and anti-aging effects. Here, we aimed to characterize the glucuronidation of bakuchiol using human liver microsomes (HLM) and expressed UDP-glucuronosyltransferase (UGT) enzymes. 2. The glucuronide of bakuchiol was confirmed by liquid chromatography-mass spectrometry (LC-MS) and ß-glucuronidase hydrolysis assay. Glucuronidation rates and kinetic parameters were derived by enzymatic incubation and model fitting. Activity correlation analyses were performed to identify the main UGT isoforms contributing to hepatic metabolism of bakuchiol. 3. Among the three UGT enzymes (i.e., UGT1A1, UGT1A3 and UGT2B15) capable of catalyzing bakuchiol glucuronidation, UGT2B15 showed the highest activity with a CLint value of 100 µl/min/nmol. Bakuchiol glucuronidation was strongly correlated with glucuronidation of 5-hydroxyrofecoxib (r = 0.933; p < 0.001), 3-O-glucuronidation of ß-estradiol (r = 0.719; p < 0.01) and significantly correlated with 24-O-glucuronidation of CDCA (r = 0.594; p < 0.05). In addition, a marked species difference existed in hepatic glucuronidation of bakuchiol. 4. In conclusion, UGT1A1, UGT1A3 and UGT2B15 were identified as the main contributors to glucuronidation of bakuchiol.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Fenoles/metabolismo , Extractos Vegetales/metabolismo , Cromatografía Liquida , Glucuronidasa/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Lactonas , Hígado/metabolismo , Espectrometría de Masas
11.
Pharmacogn Mag ; 11(42): 360-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25829776

RESUMEN

BACKGROUND: Stemonae radix has been applied in traditional Chinese medicine for centuries. Alkaloids are the main active ingredient in stemonae radix, so their composition and concentration levels are directly linked to clinic effects. OBJECTIVE: The objective was to develop an analytical method with multiple markers for quality survey of commercial stemonae radix. MATERIALS AND METHODS: A method for simultaneous determination of six compounds in commercial stemonae radix was performed using solid-phase extraction and high-performance liquid chromatography coupled with evaporative light scattering detector. The separation was carried out on an Agilent TC-C18 column with 0.1% acetonitrile solution of triethylamine aqueous solution and acetonitrile as the mobile phase under gradient elution within 70 min. The hierarchical clustering analysis (HCA) was successfully used to classify the samples in accordance with their chemical constituents. RESULTS: Linearity (R(2) > 0.9990), intra- and inter-day precision (relative standard deviations <4%), limit of detection (0.011-0.086 µg/mL), limit of quantification (0.033-0.259 µg/mL) of the six alkaloids were determined, and the recoveries were between 96.6% and 103.7%. The method was successfully applied to analysis 36 batches of commercial stemonae radix. All the samples could be classified into five clusters by HCA. CONCLUSION: This article provides an accurate and simple analytical method for quality survey of commercial stemonae radix. Because of the significant chemical variations, careful selection of Stemona sources with obvious antitussive value but devoid of croomine followed by good agricultural practice and good manufacturing practice process is suggested.

12.
J Sep Sci ; 36(12): 1945-52, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576377

RESUMEN

We aim to determine the chemical constituents of three species of Cistanches Herba using HPLC coupled with diode array detection and high-resolution MS. Ten phenylethanoid glycosides were identified and further quantified as marker substances by HPLC coupled with diode array detection method. The separation was conducted using an Agilent TC-C18 column with 0.1% formic acid and methanol as the mobile phases under gradient elution. The analytical method was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery, and subsequently applied to evaluate the quality of 36 batches of Cistanche plants. The chemometric procedures (i.e., hierarchical clustering analysis and principal component analysis) were used to compare different species of Cistanches Herba, leading to successful classification of the Cistanche samples in accordance with their origins. In conclusion, this study provides a chemical basis for quality control of Cistanches Herba.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cistanche/química , Medicamentos Herbarios Chinos/química , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Espectrometría de Masas/instrumentación , Análisis de Componente Principal , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA