Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Aging (Albany NY) ; 16(1): 106-128, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38157259

RESUMEN

BACKGROUND: Patients with chronic kidney disease (CKD) lack efficacious treatment. Jian-Pi-Yi-Shen formula (JPYSF) has demonstrated significant clinical efficacy in treating CKD for decades. However, its renoprotective mechanism has not been fully elucidated. This study aimed to determine whether JPYSF could delay renal fibrosis progression in CKD by restoring nicotinamide adenine dinucleotide (NAD+) biosynthesis. METHODS: Adenine-diet feeding was used to model CKD in C57BL/6 mice. JPYSF was orally administered for 4 weeks. Human proximal tubular epithelial cells (HK-2) cells were stimulated with transforming growth factor-ß1 (TGF-ß1) with or without JPYSF treatment. Renal function of mice was assessed by serum creatinine and blood urea nitrogen levels. Renal histopathological changes were assessed using Periodic acid-Schiff and Masson's trichrome staining. Cell viability was assessed using a cell counting kit-8 assay. NAD+ concentrations were detected by a NAD+/NADH assay kit. Western blotting, immunohistochemistry, and immunofluorescence were employed to examine fibrosis-related proteins and key NAD+ biosynthesis enzymes expression in the CKD kidney and TGF-ß1-induced HK-2 cells. RESULTS: JPYSF treatment could not only improve renal function and pathological injury but also inhibit renal fibrosis in CKD mice. Additionally, JPYSF reversed fibrotic response in TGF-ß1-induced HK-2 cells. Moreover, JPYSF rescued the decreased NAD+ content in CKD mice and TGF-ß1-induced HK-2 cells through restoring expression of key enzymes in NAD+ biosynthesis, including quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide riboside kinase 1. CONCLUSIONS: JPYSF alleviated renal fibrosis in CKD mice and reversed fibrotic response in TGF-ß1-induced HK-2 cells, which may be related to the restoration of NAD+ biosynthesis.


Asunto(s)
NAD , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Fibrosis , Riñón/patología , Ratones Endogámicos C57BL , NAD/biosíntesis , Insuficiencia Renal Crónica/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
2.
Front Pharmacol ; 14: 1236820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034992

RESUMEN

Background: Acute kidney injury (AKI) induced by cisplatin remains a major impediment to the clinical application of cisplatin, necessitating urgent exploration for promising solutions. Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, has been shown by our group to have a reno-protective effect in adenine-induced chronic kidney disease mice and diabetic db/db mice. However, the effect of HDD on cisplatin-induced AKI and its underlying mechanisms are unknown. Methods: The AKI model was established by intraperitoneal injection of cisplatin (20 mg/kg) in C57BL/6 mice. The mice in the treatment group were administrated with HDD (6.8 g/kg/d) for 5 consecutive days before cisplatin challenge. After 72 h cisplatin injection, blood and kidney tissue were subsequently collected for biochemical detection, histopathological evaluation, Western blot analysis, immunohistochemical staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to detect changes in renal metabolites. Results: The results showed that HDD significantly reduced serum creatinine and blood urea nitrogen levels and alleviated renal histopathological injury in cisplatin-induced AKI mice. And HDD treatment demonstrated a significant inhibition in apoptosis, inflammation, and oxidative stress in AKI mice. Moreover, non-target metabolomics revealed that HDD significantly restored 165 altered metabolites in AKI mice. Subsequent enrichment analysis and pathway analysis of these metabolites indicated that nicotinate and nicotinamide metabolism was the primary pathway affected by HDD intervention. Further investigation showed that HDD could upregulate nicotinamide adenine dinucleotide (NAD+) biosynthesis-related enzymes quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide phosphoribosyltransferase to replenish NAD+ content in the kidney of AKI mice. Conclusion: In summary, HDD exerted a protective effect against cisplatin-induced AKI and suppressed apoptosis, inflammation, and oxidative stress in the kidney of AKI mice, which may be attributed to the modulation of NAD+ biosynthesis.

3.
Biomed Pharmacother ; 164: 114989, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315436

RESUMEN

Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, is effective in clinical treatment of chronic kidney disease (CKD). However, the underlying mechanism remains to be clarified. In this study, we aimed to investigate the role of HDD in the regulation of renal glucose metabolism in a CKD mouse model. The 0.2% adenine-induced CKD mouse model was administered HDD extract at a dose of 6.8 g/kg/day for 4 weeks. Detection of renal glucose metabolites was performed by ultra-performance liquid chromatography-tandem mass spectrometry. The expression of renal fibrosis and glucose metabolism-related proteins was tested by Western blotting, immunohistochemistry, and immunofluorescence. The results showed that HDD treatment could significantly reduce serum creatinine (0.36 ± 0.10 mg/dL vs. 0.51 ± 0.07 mg/dL, P < 0.05) and blood urea nitrogen (40.02 ± 3.73 mg/dL vs. 62.91 ± 10 mg/dL, P < 0.001) levels, and improve renal pathological injury and fibrosis. Aberrant glucose metabolism was found in the kidneys of CKD mice, manifested by enhanced glycolysis and pentose phosphate pathway, and tricarboxylic acid cycle inhibition, which could be partially restored by HDD treatment. Furthermore, HDD regulated the expression of hexokinase 2, phosphofructokinase, pyruvate kinase M2, pyruvate dehydrogenase E1, oxoglutarate dehydrogenase, and glucose-6-phosphate dehydrogenase in CKD mice. In conclusion, HDD protected against adenine-induced CKD, reshaped glucose metabolism profiles, and restored the expression of key enzymes of glucose metabolism in the kidneys of CKD mice. This study sheds light on targeting glucose metabolism for the treatment of CKD and screening small molecule compounds from herbal medicine to slow CKD progression.


Asunto(s)
Insuficiencia Renal Crónica , Salvia miltiorrhiza , Ratones , Animales , Salvia miltiorrhiza/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Riñón/patología , Modelos Animales de Enfermedad , Fibrosis , Vía de Pentosa Fosfato , Glucosa/metabolismo , Adenina/metabolismo
4.
J Ethnopharmacol ; 306: 116168, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36646160

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shenshuaifu Granule (SSF) is an in-hospital preparation approved by the Guangdong Food and Drug Administration of China. It has been clinically used against kidney diseases for more than 20 years with a definite curative effect. AIM OF THE STUDY: Cisplatin (CDDP) is a first-line chemotherapeutic drug in clinical practice, primarily excreted by the kidney with nephrotoxicity as a common side effect. Approximately 5-20% of cancer patients develop acute kidney injury (AKI) after chemotherapy; however, prevention and control strategies are currently unavailable. Therefore, it is important to identify safe and effective drugs that can prevent the nephrotoxicity of CDDP. SSF is an herbal formulation with 8 herbs, and has been used to protect the kidney in China. Nonetheless, its mechanism in relieving CDDP nephrotoxicity remains unclear. Therefore, this work attempt to prove that SSF can alleviate CDDP nephrotoxicity. We also explore its mechanism. MATERIALS AND METHODS: First, Thin Layer Chromatography (TLC) of a few herbs in SSF were performed for quality control. Several open-access databases were used to identify the active ingredients of SSF, their corresponding targets, and CDDP-induced nephrotoxicity targets. We performed Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Next, the results of network pharmacology were validated using CDDP-induced nephrotoxicity mouse models. Renal function in the mice was assessed by analyzing the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). On the other hand, renal damage was assessed by determining the level of tubular injury and apoptotic cells using Periodic acid-Schiff (PAS) staining and Terminal Dutp Nick End-Labeling (TUNEL) staining, respectively. The expression of inflammatory and apoptotic-related targets including IL-1ß, IL-6, TNF-α, Cox-2, Bax, Bcl-2, Cleaved-caspase 3, and Cleaved-caspase 9 was determined using Western Blot (WB) and Immunohistochemistry (IHC). Furthermore, WB was used to analyze the expression of proteins associated with the TLR4/MyD88/NF-κB pathway in the kidneys of mice with CDDP-induced nephrotoxicity. Finally, molecular docking simulations were performed to evaluate the binding abilities between major active ingredients of SSF and core targets. RESULT: Through network pharmacology, we identified 127 active ingredients of SSF and their corresponding 134 targets. Additional screening identified 14 active ingredients and 17 targets for further analysis. In biological process (BP), the targets were enriched in inflammation and apoptosis, among others. In KEGG terms, they were enriched in apoptosis and NF-κB pathways. Animal experiments revealed that SSF significantly reduced the levels of Scr and BUN and prevented renal tubular damage in mice treated with CDDP. In addition, SSF inhibited inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Molecular docking revealed good binding capacities of active ingredients and core targets. CONCLUSION: In summary, the experimental findings were consistent with the network pharmacological predictions. SSF can inhibit inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Taken together, our data suggest that SSF is an alternative agent for the treatment of CDDP-induced nephrotoxicity.


Asunto(s)
Cisplatino , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Cisplatino/farmacología , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Simulación del Acoplamiento Molecular , Inflamación/inducido químicamente , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis
5.
Artículo en Inglés | MEDLINE | ID: mdl-36636607

RESUMEN

Background: Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been widely used to treat a variety of disorders, including renal diseases. Despite being well-established in clinical practice, the mechanisms behind the therapeutic effects of DSS on diabetic nephropathy (DN) remain elusive. Methods: To explore the therapeutic mechanism, we explored the action mechanism of DSS on DN using network pharmacology strategies. All ingredients were selected from the relevant databases, and active ingredients were chosen on the basis of their oral bioavailability prediction and drug-likeness evaluation. The putative proteins of DSS were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, whereas the potential genes of DN were obtained from the GeneCards and OMIM databases. Enrichment analysis using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) was performed to discover possible hub targets and gene-related pathways. Afterwards, the underlying molecular mechanisms of DSS against DN were validated experimentally in vivo against db/db mice. Results: We identified 91 phytochemicals using the comprehensive network pharmacology technique, 51 of which were chosen as bioactive components. There were 40 proteins and 20 pathways in the target-pathway network. The experimental validation results demonstrated that DSS may reduce the expression of TNF-α, IL-6, and ICAM-1, as well as extracellular matrix deposition, by blocking the JNK pathway activation, which protects against kidney injury. Conclusion: This study discovered the putative molecular mechanisms of action of DSS against diabetic kidney damage through a network pharmacology approach and experimental validation.

6.
Front Pharmacol ; 13: 940773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386135

RESUMEN

Background: Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease. The effective treatment of DKD would rely on the incorporation of a multi-disciplinary. Studies have shown that Tripterygium wilfordii Hook.F. and Trichosanthes kirilowii Maxim have remarkable curative effects in treating DKD, but their combination mechanism has not been fully elucidated. Methods: We explored the mechanism of Tripterygium wilfordii Hook.F.-Trichosanthes kirilowii Maxim decoction (Leigongteng-Tianhuafen Decoction,LTD) in the treatment of DKD by network pharmacology and molecular docking. The main active components and action targets of LTD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of DKD were obtained from GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. Then, an herb-component-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein-protein interaction (PPI) network was constructed to identify hub targets of DKD. The gene ontology (GO) function enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed by RStudio. Finally, molecular docking was performed by AutoDock Vina and PyMOL software to explore the interaction between compounds and targets. Furthermore, the DKD model of human renal tubular cells (HK-2) induced by high glucose (HG) was selected, and the predicted results were verified by western blot analysis and immunofluorescence. Results: A total of 31 active components of LTD were screened out, and 196 targets were identified based on the TCMSP database. A total of 3,481 DKD related targets were obtained based on GeneCards, DisGeNET, and OMIM databases. GO function enrichment analysis included 2,143, 50, and 167 GO terms for biological processes (BPs), cellular composition (CCs), and molecular functions (MFs), respectively. The top 10 enrichment items of BP annotations included response to lipopolysaccharide, response to molecule of bacterial origin, response to extracellular stimulus, etc. CC was mainly enriched in membrane raft, membrane microdomain, plasma membrane raft, etc. The MF of LTD analysis on DKD was predominately involved in nuclear receptor activity, ligand-activated transcription factor activity, RNA polymerase II-specific DNA-binding transcription factor binding, etc. The involvement signaling pathway of LTD in the treatment of DKD included AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, insulin resistance, TNF signaling pathway, etc. Molecular docking results showed that kaempferol, triptolide, nobiletin, and schottenol had a strong binding ability to PTGS2 and RELA. Furthermore, the in vitro experiments confirmed that LTD effectively decreased the expression of PTGS2, NF-κB, JNK, and AKT in the HG-induced DKD model. Conclusion: The findings of this study revealed that the therapeutic efficacy of LTD on DKD might be achieved by decreasing the expression of PTGS2, NF-κB, JNK, and AKT, which might improve insulin resistance, inflammation, and oxidative stress. These findings can provide ideas and supply potential therapeutic targets for DKD.

7.
Front Pharmacol ; 13: 1019629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313325

RESUMEN

Honokiol (HKL), a biphenolic compound, is derived from the bark of Magnolia officinalis, which is used in traditional Chinese medicine for gastrointestinal complaints. HKL has diverse pharmacological activities and has protective effects in various disease models. However, the role and mechanism of HKL in treating chronic kidney disease (CKD) remain unclear. This study was designed to investigate whether HKL can alleviate CKD and the potential mechanism by which it acts. Male Sprague-Dawley rats were fed 0.75% w/w adenine feed for 3 weeks to induce CKD. HKL was administered by gavage at a dose of 5 mg/kg/day for 4 weeks. Using a special kit, serum creatinine (Scr) and blood urea nitrogen (BUN) were measured. To assess renal pathology, periodic acid-Schiff and Masson's trichrome staining were conducted. Renal lipid profiles were analyzed by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). The results showed that the administration of HKL reduced Scr and BUN and alleviated renal tubular atrophy and tubulointerstitial fibrosis in an adenine-induced CKD rat model. By using lipidomics, we identified 113 lipids (47 lipids in negative ion mode, 66 lipids in positive ion mode) that could be significantly reversed by HKL treatment in CKD rat kidneys. Most of these lipids belonged to the phosphatidylcholine (PC), ceramide (Cer), phosphatidylethanolamine (PE), and triacylglycerol (TAG) classes. Moreover, HKL improved fatty acid oxidation in the kidneys of CKD rats. In conclusion, this study found that HKL can protect against adenine-induced CKD, possibly through the regulation of lipid metabolism.

8.
Small Methods ; 6(9): e2200379, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978419

RESUMEN

Chemodynamic therapy (CDT) is an effective cancer treatment that uses Fenton reaction to induce cancer cell death. Current clinical applications of CDT are limited by the dependency of external supply of metal ions as well as low catalytic efficiency. Here, a highly efficient metal-free CDT by using endoperoxide bridge-containing artesunate as free radical-generating substance is developed. A Pt(IV) prodrug (A-Pt) containing two artesunate molecules in the axial direction is synthesized, which can be decomposed into cisplatin and artesunate under reducing intracellular environment in tumor cells. To improve the catalytic efficiency for Fenton reaction, a near-infrared-II (NIR-II) photothermal agent IR1048 is incorporated to achieve a mild hyperthermia effect. By encapsulating the A-Pt and IR1048 with human serum albumin, A-Pt-IR NP are formulated for efficient drug delivery in 4T1 tumor-bearing mice. NIR-II light irradiation of A-Pt-IR NP treated mice show accelerated Fenton reaction. In addition, A-Pt-IR NP could also induce strong immunogenic cell death, which effectively reverses the immunosuppressive tumor microenvironment, and augments antitumor immunity. This study demonstrates that A-Pt-IR NP are potent biodegradable NIR-II active chemotherapy/CDT nanomedicine for clinical translation.


Asunto(s)
Artemisininas , Hipertermia Inducida , Nanopartículas , Neoplasias , Profármacos , Animales , Artemisininas/uso terapéutico , Artesunato/uso terapéutico , Cisplatino/uso terapéutico , Humanos , Inmunoterapia , Ratones , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico , Albúmina Sérica Humana/uso terapéutico , Microambiente Tumoral
9.
Front Pharmacol ; 13: 922707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865941

RESUMEN

Traditional Chinese medicine (TCM) is an important complementary and alternative branch of chronic kidney disease (CKD) therapy. Jian-Pi-Yi-Shen formula (JPYSF) is a TCM formula used for treating CKD with good efficacy. However, the underlying mechanisms of JPYSF in treating CKD remain to be elucidated. The purpose of the present study was to investigate the renoprotective effect and potential mechanism of JPYSF in treating CKD. CKD rat model was induced by feeding a diet containing 0.75% w/w adenine for 4 weeks. JPYSF was given by gavage every day, starting from the 3rd week of the adenine-containing diet and continuing for 4 weeks at the dose of 10.89 g/kg. Renal injury was evaluated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathology, and fibrotic markers expression. Serum levels of tryptophan metabolites were detected by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Aryl hydrocarbon receptor (AHR) signaling was tested by Western blot analysis. The results found that JPYSF treatment significantly lowered Scr and BUN levels, improved renal pathological injury, and down-regulated fibrotic markers expression in CKD rats. Furthermore, JPYSF significantly reduced the levels of 10 tryptophan metabolites in the serum of CKD rats and restored the level of tryptophan. Additionally, the kidney expression of AHR signaling was enhanced in CKD rats and was further suppressed in JPYSF treated rats. These results suggested that JPYSF protected against adenine-induced CKD via modulating tryptophan metabolism and AHR activation.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35815260

RESUMEN

Cisplatin, also known as cis-diamine dichloroplatinum (CDDP), is a widely used chemotherapeutic drug. However, its application is limited by the occurrence of serious nephrotoxicity. Currently, no effective therapy is available for combating CDDP-induced acute kidney injury (AKI). In the present study, we investigated the efficacy of Jianpi Yishen Tang (JPYST), a traditional Chinese medicine (TCM) compound commonly used to treat chronic kidney disease, against CDDP-induced AKI. In the CDDP + JPYST group, male mice were pretreated with JPYST (18.35 g/kg/day) for 5 consecutive days before receiving a single dose of CDDP (20 mg/kg), all mice were sacrificed 72 h after the CDDP injection. Results showed that JPYST suppressed CDDP-induced kidney dysfunction and tubular damage scores in the mice. Mechanistically, JPYST treatment attenuated CDDP-induced renal tubular cell apoptosis in AKI mice, as manifested by a marked decreased in TUNEL-positive cell counts, downregulation of the pro-apoptotic proteins Bax, Bad and caspase 3, and upregulation of the antiapoptotic protein Bcl-2 in kidney tissues. Meanwhile, JPYST decreased the expression of inflammatory cytokines TNF-α, IL-1ß, and IL-6 in the serum and renal tissues of mice following CDDP administration. These factors are involved in suppressing the activation of phospho-NF-κB p65 in tubular epithelial cells. Taken together, these findings demonstrated that JPYST exerts renoprotective effects against CDDP-induced AKI through antiapoptosis and anti-inflammation effects, and these are associated with downregulation of NF-κB activation. Therefore, JPYST has potential for development of treatment therapies against CDDP-induced AKI.

11.
Artículo en Inglés | MEDLINE | ID: mdl-35677375

RESUMEN

Background: Chronic kidney disease (CKD) is a major public health problem worldwide. Treatment with renin-angiotensin system inhibitors can achieve only partial efficacy on renal function decline and renal fibrosis in CKD patients. Huangqi-Danshen decoction (HDD) is a basic Chinese herbal pair which is commonly used to treat CKD with good efficacy. Objectives: The current study aimed to investigate the effect of perindopril erbumine (PE), an angiotensin-converting enzyme inhibitor, combined with HDD on adenine-induced CKD rat model and explore the possible mechanism from Sirtuin3/mitochondrial dynamics pathway. Method: CKD rat model was established by feeding of 0.75% w/w adenine containing diet for 3 weeks. At the same time, the treatment groups were given PE (0.42 mg/kg/d) or HDD (4.7 g/kg/d) or PE combined with HDD by gavage for 4 weeks. Renal function was evaluated by the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). The renal pathological injury was observed by periodic acid-Schiff (PAS) and Masson's trichrome staining. Proteins expression was determined by Western blot analysis. Mitochondrial morphology was observed by transmission electron microscopy. Results: PE in combination with HDD significantly improved renal function, reduced tubular injury and interstitial fibrosis in adenine-induced CKD rats. Moreover, PE + HDD treatment mainly activated the Sirtuin3 expression level. In addition, PE + HDD exhibited bidirectional regulation on mitochondrial dynamics by suppressing mitochondrial fission protein dynaminrelated protein 1 expression and elevating mitochondrial fusion protein optic atrophy 1 expression, resulted in restraint of mitochondrial fragmentation. Conclusion: The combination of PE and HDD attenuated adenine-induced CKD in rats, which was possibly associated with Sirtuin3/mitochondrial dynamics pathway.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34938344

RESUMEN

OBJECTIVE: Jian-Pi-Yi-Shen formula (JPYSF) is a traditional Chinese herbal decoction and has been used for treating chronic kidney disease (CKD) in clinics for decades. However, the potential mechanisms have not been fully elucidated. This study was designed to test the efficacy of JPYSF in treating CKD and explore the underlying mechanism. METHODS: Two CKD rat models were established by 5/6 nephrectomy (5/6 Nx) and feeding with adenine-containing feed, respectively. The intervention dose of JPYSF was 10.89 g/kg/d by gastric irrigation. Renal function was assessed by serum creatinine (Scr) and blood urea nitrogen (BUN). Periodic acid-Schiff (PAS) and Masson's trichrome staining were used to evaluate renal histopathological changes. The levels of nicotinamide adenine dinucleotide (NAD+) were measured by using the enzyme-linked immunosorbent assay kit. The proteins expressions of renal fibrosis, quinolinate phosphoribosyltransferase (QPRT), sirtuin 3 (SIRT3), and mitochondrial dynamics were determined and quantified by Western blot analysis. RESULTS: The results show that administration of JPYSF significantly lowered Scr and BUN levels, improved renal tubular atrophy and interstitial fibrosis, and decreased renal extracellular matrix deposition in two CKD rat models. In addition, CKD rats exhibited suppressed QPRT/NAD+/SIRT3 signal, increased mitochondrial fission, and decreased mitochondrial fusion. JPYSF treatment promoted QPRT/NAD+/SIRT3 signal and restored mitochondrial fission/fusion balance. CONCLUSION: In conclusion, administration of JPYSF effectively alleviated CKD progression in two rat models, which may be related with regulation of the QPRT/NAD+/SIRT3/mitochondrial dynamics pathway.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33101449

RESUMEN

Our previous studies have demonstrated that Jian-Pi-Yi-Shen formula (JPYSF), a traditional Chinese herbal decoction, has a renoprotective effect in 5/6 nephrectomy-induced chronic kidney injury. However, the role and potential mechanisms of JPYSF in the treatment of acute kidney injury (AKI) remain unknown. This study was designed to test the beneficial effect of JPYSF in an AKI mouse model and to investigate the underlying mechanism by using metabolomics analysis. The AKI mouse model was induced by a single intraperitoneal injection of cisplatin at a dose of 20 mg/kg. The mice in the treatment group were pretreated orally with JPYSF (18.35 g/kg/d) for 5 days before cisplatin injection. Seventy-two hours after cisplatin injection, serum and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was applied to analyze metabolic profiling variations in the kidney. The results showed that pretreatment with JPYSF obviously reduced the levels of serum creatinine and blood urea nitrogen and alleviated renal pathological injury in AKI mice. Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot revealed a clear separation between the AKI and AKI + JPYSF group. A total of 68 and 87 significantly differentially expressed metabolites were identified in the kidney of AKI mice responding to JPYSF treatment in negative and positive ion mode, respectively. The pivotal pathways affected by JPYSF included vitamin B6 metabolism, alanine, aspartate and glutamate metabolism, lysine biosynthesis, and butanoate metabolism. In conclusion, JPYSF can protect the kidney from cisplatin-induced AKI, which may be associated with regulating renal metabolic disorders.

14.
J Pharmacol Sci ; 143(3): 165-175, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32387002

RESUMEN

yeyachun and danshen exist as Chinese patent medicine, Xuemai Tong, and are clearly effective at alleviating liver fibrosis (LF). Previous studies have indicated that triterpenoids from yeyachun (EFT), and phenolic acids from danshen (SMP) are effective in the treatment of LF. The regulation of intestinal flora is an effective method for treating LF. The aim of this study was to investigate the effect of a mixture of EFT and SMP on carbon tetrachloride (CCl4) induced LF. Our results showed the mixture significantly decreased liver damage and fibrosis index, and maintained liver tissue composition, compared to the model group. Moreover, the imbalance of symptoms of intestinal flora was improved. The mixture also caused changes to metabolites of gut flora. Furthermore, the expression of CD68 in liver tissues from the treated groups was significantly decreased when compared to the model group. However, no significant difference was observed from microstructure of gut tissues and LPS concentrations in the serum between mixture treated mice and model mice. This study suggests that the mixture of EFT and SMP had a significant effect on CCl4 induced LF, and the mechanism of this action, at least in part, involved the regulation of intestinal flora and their metabolites.


Asunto(s)
Tetracloruro de Carbono/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/microbiología , Fitoterapia , Salvia miltiorrhiza/química , Triterpenos/farmacología , Triterpenos/uso terapéutico , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/aislamiento & purificación , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Masculino , Ratones Endogámicos ICR , Triterpenos/aislamiento & purificación
15.
Am J Transl Res ; 12(3): 989-998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269729

RESUMEN

Huangqi-Danshen decoction (HDD) is composed of Astragali Radix (Huang-qi) and Salviae Miltiorrhizae Radix et Rhizoma (Dan-shen), both of which are the most commonly used herbs for the clinical treatment of diabetic nephropathy (DN) in traditional Chinese medicine and show good efficacy. However, the underlying mechanism of this effect is unclear. The aim of this study was to evaluate the effect and potential mechanism of HDD in the treatment of DN in a type 2 diabetic animal model, db/db mice. HDD extract was administered orally to db/db mice at a dose of 6.8 g/kg/day for 12 weeks. At the end of the study, serum, urine, and kidney samples were collected for biochemical and pathological examination. The expression of proteins associated with mitochondrial fission and mitophagy was determined by quantitative real-time PCR, Western blotting, and immunohistochemical analysis. The results showed that treatment with HDD substantially reduced urinary albumin excretion and improved renal injury in db/db mice. Moreover, mitochondrial fission was increased in the kidneys of the db/db mice, as evidenced by enhanced expression of dynamin-related protein 1 and mitochondrial morphological changes. Furthermore, PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy was activated in the db/db mice, which manifested as increased protein expression and obvious autophagic vacuole encapsulating mitochondria. HDD treatment significantly reversed the enhanced mitochondrial fission and PINK1/Parkin-mediated mitophagy in the db/db mice. In conclusion, this work suggested that HDD could protect against type 2 diabetes-induced kidney injury possibly by inhibiting PINK1/Parkin-mediated mitophagy.

16.
Front Pharmacol ; 11: 622658, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33603670

RESUMEN

Jian-Pi-Yi-Shen formula (JPYSF) is a traditional Chinese medicine (TCM) formula used in clinic to treat chronic kidney disease (CKD) for decades. However, the mechanisms of JPYSF in treating CKD have not been fully elucidated. The aim of the present study was to test the renoprotective effect of JPYSF on CKD rat model and investigate the potential mechanism from the perspective of serum exosomal microRNAs (miRNAs). CKD rat model was induced by feeding Sprague-Dawley rats a diet containing 0.75% w/w adenine for four weeks. The rats in the treatment group were given 10.89 g/kg JPYSF by gavage every day, starting from the 3rd week of the adenine-containing diet for six weeks. Serum biochemistry and histopathology were used to evaluate the renoprotective effects of JPYSF. Serum exosomes were isolated by ExoQuick-TC PLUS exosomes extraction kit and were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. Exosomal miRNAs profiling was analyzed by small RNA sequencing. The results showed that JPYSF treatment significantly lowered serum creatinine and blood urea nitrogen levels and alleviated renal pathological injury in CKD rats. Furthermore, serum exosomes were successfully isolated and identified. Small RNA sequencing revealed that 4 exosomal miRNAs (miR-192-5p, miR-194-5p, miR-802-5p, and miR-143-3p) were significantly downregulated in the CKD group and were markedly upregulated after JPYSF treatment. At last, miR-192-5p was identified as the most relevant miRNA for CKD diagnosis and JPYSF treatment. In conclusion, JPYSF protects kidney from adenine-induced CKD, which may be associated with modulation of exosomal miRNAs.

17.
J Ethnopharmacol ; 246: 112165, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31445133

RESUMEN

Blood-brain barrier (BBB) is a barrier which maintains the material exchange balance of brain microenvironment and could be destroyed by chronic stress (CS). Glucocorticoids (GCs) can mimic the chronic stress induced damage to BBB. GCs induced BBB trauma models in vitro and in vivo to explore the effects of the traditional medicine Xiao-Yao-San (XYS). In this research, we found CS could injure the BBB to change the biochemical index, which could be reversed by XYS in vitro. The abilities of cell proliferation, invasion, and the expression of tight junction related genes (Occludin, Claudin, JAM-1 and ZO-1) were suppressed by CS and the trauma could be reversed by XYS partly. It was showed that GRs interacted with Occludin directly and inhibited Occluding expression. In rats BBB trauma model, the GC content was deceased and BBB permeability was repaired by XYS. The expression of Occludin, Claudin, JAM-1 and ZO-1 were increased in the treatment of XYS. In our research, it shown that XYS affect the content of the GC and GR which interacted with Occludin directly for the first time. In addition, we also found that XYS could reduce BBB injury induced by CS via GR in BBB model in vitro. Therefore, it proves that XYS is a potential BBB repair medicine and may help to elucidate mechanism of brain pathology.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Fisiológico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Regulación hacia Arriba
18.
Front Pharmacol ; 10: 992, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551789

RESUMEN

Huangqi-Danshen decoction (HDD) is a commonly used drug pair for clinical treatment of chronic kidney disease (CKD) in traditional Chinese medicine with good efficacy. However, the potential mechanisms of this action have not been well elucidated. The aim of this study was to explore the metabolic profiling variations in response to HDD treatment in a CKD rat model. CKD rat model was induced by adding 0.75% adenine to the diet for 4 weeks. The rats in the treatment group received HDD extract orally at the dose of 4.7 g/kg/day during the experiment. At the end of the experiment, serum and kidney samples were collected for biochemical and pathological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was used to analyze metabolic profiling variations in the kidney. The results showed that treatment with HDD markedly attenuated kidney injury and improved renal function. A total of 28 metabolites contributing to CKD phenotype were found and identified in the kidney samples. The primary metabolic pathways disordered in the kidney of CKD rats were glycerophospholipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, and citrate cycle. Partial least squares discriminant analysis (PLS-DA) score plot showed that the three groups of renal samples were obviously divided into three categories, and the metabolic trajectory of the HDD treatment group moved to the control group. (E)-Piperolein A, phosphatidylcholines (PC) (18:1/22:6), phosphatidylinositols (PI) (13:0/18:1), PI (15:0/20:3), phosphatidylserines (PS) (O-20:0/12:0), and triglyceride (TG) (22:4/24:0/O-18:0) represented potential biomarkers of the renoprotective effects of HDD against CKD. In conclusion, HDD has renoprotective effect against adenine-induced CKD, which may be mediated via partially restoration of perturbed metabolism in the kidney.

19.
Artículo en Inglés | MEDLINE | ID: mdl-30713579

RESUMEN

Chronic kidney disease (CKD) is a leading public health problem with high morbidity and mortality. However, the therapies remain limited. Traditional Chinese medicine (TCM) has been used for treating kidney disease for thousands of years and is an effective alternative treatment for CKD patients in China and other Asian countries. In the present study, we aimed to investigate the effect and mechanism of Huangqi-Danshen decoction (HDD), a TCM herbal decoction, on treating CKD. CKD rat model was induced by adding 0.75% adenine to the diet for 4 weeks. HDD extract was administrated orally to CKD rats at the dose of 4.7 g/kg/d for consecutive 4 weeks in adenine-induced CKD rats. Kidney function was evaluated by the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). The pathological changes of kidney tissues were observed by periodic acid-Schiff (PAS) and Masson's trichrome staining. The proteins expression of renal fibrosis and mitochondrial dynamics were determined and quantified by Western blot analysis. CKD rats showed obvious decline in renal function as evidenced by increased levels of Scr and BUN, which were blunted by HDD treatment. HDD could also improve tubular atrophy and interstitial fibrosis of CKD rats. Moreover, HDD downregulated fibronectin, type IV collagen, and α-smooth muscle actin expression in CKD rats. Furthermore, mitochondrial dynamics was disturbed in CKD rats, which manifested as increased mitochondrial fission and decreased mitochondrial fusion. HDD treatment restored mitochondrial dynamics in CKD rats by repressing dynamin-related protein 1 and Mid 49/51 expression, promoting mitofusin 2 expression, and suppressing optic atrophy 1 proteolysis. In conclusion, HDD could significantly retard CKD progression through modulating mitochondrial dynamics.

20.
Artículo en Inglés | MEDLINE | ID: mdl-30108662

RESUMEN

Jian-Pi-Yi-Shen formula (JPYSF) is a Chinese herbal decoction used for treating chronic kidney disease (CKD) for over 20 years with good efficiency. However, the mechanism lacks solid evidence. In the present study, we tested the hypothesis that JPYSF may retard CKD progression via inhibition of inflammation in 5/6 nephrectomy (5/6 Nx) rat model. The 5/6 Nx rats were randomly divided into 2 groups: 5/6 Nx group and JPYSF group. Sham-operated rats served as control. JPYSF (2.06 g/kg/d) were administrated by gavage to 5/6 Nx rats daily for 6 weeks. Results showed that JPYSF treatment significantly improved kidney function and pathological injury in 5/6 Nx rats. Multiplex analysis of cytokines revealed that JPYSF reduced proinflammatory cytokines and increased anti-inflammatory cytokine production. Furthermore, JPYSF inhibited the activation of nuclear factor-kappa B (NF-κB) signaling pathway. In conclusion, our data demonstrated that JPYSF remarkably retards development and progression of CKD in a 5/6 Nx rat model, which may be associated with inhibition of inflammation via NF-κB signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA