Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Toxicol ; 96(11): 3013-3032, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35963937

RESUMEN

Styrene oligomers (SO) are well-known side products formed during styrene polymerization. They consist mainly of dimers (SD) and trimers (ST) that have been shown to be still residual in polystyrene (PS) materials. In this study migration of SO from PS into sunflower oil at temperatures between 5 and 70 °C and contact times between 0.5 h and 10 days was investigated. In addition, the contents of SD and ST in the fatty foodstuffs créme fraiche and coffee cream, which are typically enwrapped in PS, were measured and the amounts detected (of up to 0.123 mg/kg food) were compared to literature data. From this comparison, it became evident, that the levels of SO migrating from PS packaging into real food call for a comprehensive risk assessment. As a first step towards this direction, possible genotoxicity has to be addressed. Due to technical and experimental limitations, however, the few existing in vitro tests available are unsuited to provide a clear picture. In order to reduce uncertainty of these in vitro tests, four different knowledge and statistics-based in silico tools were applied to such SO that are known to migrate into food. Except for SD4 all evaluated SD and ST showed no alert for genotoxicity. For SD4, either the predictions were inconclusive or the substance was assigned as being out of the chemical space (out of domain) of the respective in silico tool. Therefore, the absence of genotoxicity of SD4 requires additional experimental proof. Apart from SD4, in silico studies supported the limited in vitro data that indicated the absence of genotoxicity of SO. In conclusion, the overall migration of all SO together into food of up to 50 µg/kg does not raise any health concerns, given the currently available in silico and in vitro data.


Asunto(s)
Contaminación de Alimentos , Poliestirenos , Café , Contaminación de Alimentos/análisis , Embalaje de Alimentos , Poliestirenos/química , Poliestirenos/toxicidad , Aceite de Girasol
2.
Toxicol In Vitro ; 78: 105257, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34688838

RESUMEN

Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 µg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.


Asunto(s)
Aluminio/toxicidad , Daño del ADN , Nanopartículas del Metal/toxicidad , Cloruro de Aluminio/toxicidad , Óxido de Aluminio/toxicidad , Células CACO-2 , Línea Celular , Ensayo Cometa , Hepatocitos/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Pruebas de Micronúcleos , Estrés Oxidativo
3.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32074956

RESUMEN

Aluminum (Al) is extensively used for the production of different consumer products, agents, as well as pharmaceuticals. Studies that demonstrate neurotoxicity and a possible link to Alzheimer's disease trigger concern about potential health risks due to high Al intake. Al in cosmetic products raises the question whether a possible interaction between Al and retinol (vitamin A) and cholecalciferol (vitamin D3) metabolism might exist. Understanding the uptake mechanisms of ionic or elemental Al and Al nanomaterials (Al NMs) in combination with bioactive substances are important for the assessment of possible health risk associated. Therefore, we studied the uptake and distribution of Al oxide (Al2O3) and metallic Al0 NMs in the human keratinocyte cell line HaCaT. Possible alterations of the metabolic pattern upon application of the two Al species together with vitamin A or D3 were investigated. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify the cellular uptake of Al NMs.


Asunto(s)
Óxido de Aluminio/análisis , Aluminio/análisis , Colecalciferol/farmacología , Nanoestructuras/química , Vitamina A/farmacología , Aluminio/química , Aluminio/metabolismo , Óxido de Aluminio/química , Óxido de Aluminio/metabolismo , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Espectrometría de Masa de Ion Secundario
4.
Sci Rep ; 10(1): 2698, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060369

RESUMEN

The knowledge about a potential in vivo uptake and subsequent toxicological effects of aluminum (Al), especially in the nanoparticulate form, is still limited. This paper focuses on a three day oral gavage study with three different Al species in Sprague Dawley rats. The Al amount was investigated in major organs in order to determine the oral bioavailability and distribution. Al-containing nanoparticles (NMs composed of Al0 and aluminum oxide (Al2O3)) were administered at three different concentrations and soluble aluminum chloride (AlCl3·6H2O) was used as a reference control at one concentration. A microwave assisted acid digestion approach followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was developed to analyse the Al burden of individual organs. Special attention was paid on how the sample matrix affected the calibration procedure. After 3 days exposure, AlCl3·6H2O treated animals showed high Al levels in liver and intestine, while upon treatment with Al0 NMs significant amounts of Al were detected only in the latter. In contrast, following Al2O3 NMs treatment, Al was detected in all investigated organs with particular high concentrations in the spleen. A rapid absorption and systemic distribution of all three Al forms tested were found after 3-day oral exposure. The identified differences between Al0 and Al2O3 NMs point out that both, particle shape and surface composition could be key factors for Al biodistribution and accumulation.


Asunto(s)
Aluminio/farmacología , Disponibilidad Biológica , Nanoestructuras/química , Distribución Tisular/efectos de los fármacos , Administración Oral , Aluminio/química , Cloruro de Aluminio/química , Cloruro de Aluminio/farmacología , Óxido de Aluminio/química , Óxido de Aluminio/farmacología , Animales , Humanos , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos
5.
Sci Rep ; 10(1): 261, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937806

RESUMEN

The biomolecular imaging of cell-nanoparticle (NP) interactions using time-of-flight secondary ion mass spectrometry (ToF-SIMS) represents an evolving tool in nanotoxicology. In this study we present the three dimensional (3D) distribution of nanomaterials within biomolecular agglomerates using ToF-SIMS imaging. This novel approach was used to model the resistance of human alveolar A549 cells against gold (Au) ion toxicity through intra- and extracellular biomineralization. At low Au concentrations (≤1 mM HAuCl4) 3D-ToF-SIMS imaging reveals a homogenous intracellular distribution of Au-NPs in combination with polydisperse spherical NPs biomineralized in different layers on the cell surface. However, at higher precursor concentrations (≥2 mM) supplemented with biogenic spherical NPs as seeds, cells start to biosynthesize partially embedded long aspect ratio fiber-like Au nanostructures. Most interestingly, A549 cells seem to be able to sense the enhanced Au concentration. They change the chemical composition of the extracellular NP agglomerates from threonine-O-3-phosphate aureate to an arginine-Au(I)-imine. Furthermore they adopt the extracellular mineralization process from spheres to irregular structures to nanoribbons in a dose-dependent manner with increasing Au concentrations. The results achieved regarding size, shape and chemical specificity were cross checked by SEM-EDX and single particle (sp-)ICP-MS. Our findings demonstrate the potential of ToF-SIMS 3D imaging to better understand cell-NP interactions and their impact in nanotoxicology.


Asunto(s)
Microambiente Celular , Oro/química , Imagenología Tridimensional/métodos , Nanopartículas del Metal/química , Células A549 , Proliferación Celular/efectos de los fármacos , Compuestos de Oro/química , Humanos , Nanopartículas del Metal/toxicidad , Microscopía Electrónica de Rastreo , Espectrometría de Masa de Ion Secundario
7.
Langmuir ; 33(40): 10726-10735, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28903564

RESUMEN

Aluminum has gathered toxicological attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum-containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the single-particle mode were employed to characterize two aluminum-containing nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments.

8.
Int J Hyg Environ Health ; 219(8): 780-791, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27622657

RESUMEN

According to European legislation, tobacco additives may not increase the toxicity or the addictive potency of the product, but there is an ongoing debate on how to reliably characterize and measure such properties. Further, too little is known on pyrolysis patterns of tobacco additives to assume that no additional toxicological risks need to be suspected. An on-line pyrolysis technique was used and coupled to gas chromatography-mass spectrometry (GC/MS) to identify the pattern of chemical species formed upon thermal decomposition of 19 different tobacco additives like raw cane sugar, licorice or cocoa. To simulate the combustion of a cigarette it was necessary to perform pyrolysis at inert conditions as well as under oxygen supply. All individual additives were pyrolyzed under inert or oxidative conditions at 350, 700 and 1000°C, respectively, and the formation of different toxicants was monitored. We observed the generation of vinyl acrylate, fumaronitrile, methacrylic anhydride, isobutyric anhydride and 3-buten-2-ol exclusively during pyrolysis of tobacco additives. According to the literature, these toxicants so far remained undetectable in tobacco or tobacco smoke. Further, the formation of 20 selected polycyclic aromatic hydrocarbons (PAHs) with molecular weights of up to 278Da was monitored during pyrolysis of cocoa in a semi-quantitative approach. It was shown that the adding of cocoa to tobacco had no influence on the relative amounts of the PAHs formed.


Asunto(s)
Aromatizantes , Nicotiana , Compuestos Orgánicos/análisis , Acer , Chocolate , Café , Seguridad de Productos para el Consumidor , Jugos de Frutas y Vegetales , Cromatografía de Gases y Espectrometría de Masas , Glycyrrhiza , Miel , Calor , Extractos Vegetales , Gomas de Plantas , Raíces de Plantas , Prunus domestica , Saccharum , Almidón
9.
Toxicol Sci ; 152(2): 382-94, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27208078

RESUMEN

Embryonic stem cells (ESCs) are commonly used for the analysis of gene function in embryonic development and provide valuable models for human diseases. In recent years, ESCs have also become an attractive tool for toxicological testing, in particular for the identification of teratogenic compounds. We have recently described a Bmp-reporter ESC line as a new tool to identify teratogenic compounds and to characterize the molecular mechanisms mediating embryonic toxicity. Here we describe the use of a Wnt/ß-Catenin-reporter ESC line isolated from a previously described mouse line that carries the LacZ reporter gene under the control of a ß-Catenin responsive promoter. The reporter ESC line stably differentiates into cardiomyocytes within 12 days. The reporter was endogenously induced between day 3-5 of differentiation reminiscent of its expression in vivo, in which strong LacZ activity is detected around gastrulation. Subsequently its expression becomes restricted to mesodermal cells and cells undergoing an epithelial to mesenchymal transition. The Wnt/ß-Catenin-dependent expression of the reporter protein allowed quantification of dose- and time-dependent effects of teratogenic chemicals. In particular, valproic acid reduced reporter activity on day 7 whereas retinoic acid induced reporter activity on day 5 at concentrations comparable to the ones inhibiting the formation of functional cardiomyocytes, the classical read-out of the embryonic stem cell test (EST). In addition, we were also able to show distinct effects of teratogenic chemicals on the Wnt/ß-Catenin-reporter compared with the previously described Bmp-reporter ESCs. Thus, different reporter cell lines provide complementary tools for the identification and analysis of potentially teratogenic compounds.


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Genes Reporteros , Teratógenos/toxicidad , Proteínas Wnt/genética , beta Catenina/genética , Animales , Diferenciación Celular/efectos de los fármacos , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Tretinoina/toxicidad , Ácido Valproico/toxicidad
10.
Artículo en Inglés | MEDLINE | ID: mdl-26436214

RESUMEN

The release of elemental ions from 8 coffee machines and 11 electric kettles into food simulants was investigated. Three different types of coffee machines were tested: portafilter espresso machines, pod machines and capsule machines. All machines were tested subsequently on 3 days before and on 3 days after decalcification. Decalcification of the machines was performed with agents according to procedures as specified in the respective manufacturer's manuals. The electric kettles showed only a low release of the elements analysed. For the coffee machines decreasing concentrations of elements were found from the first to the last sample taken in the course of 1 day. Metal release on consecutive days showed a decreasing trend as well. After decalcification a large increase in the amounts of elements released was encountered. In addition, the different machine types investigated clearly differed in their extent of element release. By far the highest leaching, both quantitatively and qualitatively, was found for the portafilter machines. With these products releases of Pb, Ni, Mn, Cr and Zn were in the range and beyond the release limits as proposed by the Council of Europe. Therefore, a careful rinsing routine, especially after decalcification, is recommended for these machines. The comparably lower extent of release of one particular portafilter machine demonstrates that metal release at levels above the threshold that triggers health concerns are technically avoidable.


Asunto(s)
Café , Utensilios de Comida y Culinaria , Metales/análisis , Análisis de los Alimentos , Contaminación de Alimentos/prevención & control , Metales/aislamiento & purificación
11.
Trends Pharmacol Sci ; 33(7): 353-64, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22554615

RESUMEN

Health problems are rising worldwide, be it as a consequence of lifestyle and longevity in increasingly affluent societies or due to a sharp rise in bacterial antibiotic resistance. The pharmaceutical industry is caught between high rates of attrition and the rather slow pace of a historically large regulatory system for pharmacological safety. Meanwhile, the past decade has seen a tremendous evolution of the biological toolbox, most notably of cellular assays, stem-cell differentiation and organ-mimicking systems. These systems were readily adapted for lead-compound identification. However, their use as toxicological test systems is lagging behind, not least because of a lack of regulatory acceptance. This review tries to elucidate the scale of the problem and discusses the applicability of the assays currently available, with particular regard to the use of stem cells.


Asunto(s)
Pruebas de Toxicidad/métodos , Animales , Bioensayo/economía , Bioensayo/métodos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Aprobación de Drogas/economía , Evaluación Preclínica de Medicamentos/economía , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Ratones , Modelos Animales
12.
Toxicol Sci ; 108(2): 389-400, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19168572

RESUMEN

The embryonic stem cell test (EST) represents a reliable, scientifically validated in vitro system for the detection and classification of compounds according to their teratogenic potency. However, some serious issues were frequently raised against the widespread implementation and practicability of the EST in its original version. Most importantly, the evaluation of the morphological endpoint of beating cell agglomerates requires extensive experimental experience and is prone to misjudgment. Also, the testing period of 10 days is too long and costly to be attractive for industries interested in high-throughput screening of potential drug candidates. These drawbacks prompted us to work out a new molecular approach based on analysis of the expression of certain marker proteins specific for developing heart tissue. We have previously reported that quantitative flow cytometry of marker proteins (i.e., sarcomeric myosin heavy chain and alpha-actinin) can be performed at day 7 in embryonic stem cells from mice and combined with concurrent cell viability analysis. In the present study, extensive investigations were performed in order to explore the predictive power and validity of the newly established EST, subsequently referred to as molecular fluorescence activated cell sorting (FACS)-EST, by applying and comparing a set of 10 well-known embryotoxicants that encompasses the full range of chemical inherent embryotoxic potencies possible. While the molecular FACS-EST offered the same sensitivity compared to the validated EST protocol, the test duration could be significantly reduced. Due to significant improvements, this new molecular method holds promise as a sensitive, more rapid and reproducible screen highly suited to predict developmental toxicity in vivo from in vitro data.


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Citometría de Flujo/métodos , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Biomarcadores , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Interpretación Estadística de Datos , Evaluación Preclínica de Medicamentos , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA